下肢动脉硬化闭塞症(ASO)是一种常见的下肢动脉疾病,其特点为动脉管腔狭窄或闭塞,导致肢体严重缺血。股腘动脉作为ASO的常见累及部位,其治疗一直是临床关注的重点。近年来,随着医疗器械的不断更新和临床技术的不断进步,支架植入术已成为治疗股腘动脉闭塞的重要手段。然而,支架在股腘动脉闭塞治疗中的应用也面临着诸多挑战。
下肢动脉硬化闭塞症(ASO)是一种常见的下肢动脉疾病,其特点为动脉管腔狭窄或闭塞,导致肢体严重缺血。股腘动脉作为ASO的常见累及部位,其治疗一直是临床关注的重点。近年来,随着医疗器械的不断更新和临床技术的不断进步,支架植入术已成为治疗股腘动脉闭塞的重要手段。然而,支架在股腘动脉闭塞治疗中的应用也面临着诸多挑战。
支架类型及其特点
目前,应用于股腘动脉闭塞治疗的支架主要包括金属裸支架(BMS)、药物涂层支架(DES)、覆膜支架及生物可吸收支架等。这些支架各具特点,适用于不同的临床情况。例如,BMS具有良好的径向支撑力,但远期通畅率有限;DES则通过携带抗内膜增殖药物来预防再狭窄,但药物的选择和释放方式仍需进一步优化;覆膜支架能够有效隔离病变血管与血流,但存在血栓形成的风险;生物可吸收支架则旨在减少长期植入物对血管壁的刺激,但目前其临床效果尚需进一步验证。
支架应用现状
在临床实践中,支架植入术已成为治疗股腘动脉闭塞的常规手段。然而,不同支架类型的应用效果存在差异。BMS作为传统的支架类型,其短中期通畅率尚可,但远期通畅率有限,且存在支架断裂等并发症的风险。DES虽然在一定程度上提高了远期通畅率,但药物的选择和释放方式仍需优化,以避免潜在的副作用。覆膜支架在较长病变的治疗中具有优势,但其血栓形成风险不容忽视。生物可吸收支架作为一种新兴的治疗手段,其临床效果尚需进一步观察和验证。
面临的挑战
尽管支架植入术在治疗股腘动脉闭塞方面取得了显著进展,但仍面临诸多挑战。首先,如何选择合适的支架类型以适应不同的临床情况是一个重要问题。其次,支架植入后的再狭窄问题仍需进一步解决。此外,支架植入术的操作难度和并发症风险也不容忽视。例如,门静脉穿刺作为TIPS术的关键步骤,其成功率直接影响手术效果,而术中可能出现的严重并发症也对手术安全性提出了更高要求。
未来展望
针对支架在股腘动脉闭塞治疗中的应用现状和挑战,未来研究应重点关注以下几个方面:一是进一步优化支架设计和材料选择,以提高其生物相容性和抗再狭窄能力;二是探索更加精准的手术操作技术和辅助手段,以提高手术成功率和安全性;三是加强支架植入术后的长期随访和监测工作,以及时发现和处理可能出现的并发症;四是推动多学科协作和个体化治疗方案的制定和实施工作,以更好地满足患者的临床需求。
综上所述,支架在股腘动脉闭塞治疗中的应用现状呈现出多样化和复杂化的特点。面对诸多挑战和机遇并存的局面,我们需要不断探索和创新以推动该领域的发展进步。
参考文献
[1] 代志新,杜鹏,董隽含.中国老年抚养比再估计与人口老龄化趋势再审视[J].人口研究,2023,47(3):94-107.
[2] Song P, Rudan D, Wang M, et al. National and subnational estimation of the prevalence of peripheral artery disease (PAD) in China: a systematic review and meta-analysis[J]. J Glob Health, 2019, 9(1): 010601. DOI: 10.7189/jogh.09.010601.
[3] Ichihashi S, Higashiura W, Itoh H, et al. Intravascular ultrasound assessment of acute expansion of the balloon-expandable stent in heavy calcified iliac artery lesions or in lesions resistant to dilation by a self-expanding stent[J]. Ann Vasc Surg, 2014, 28(6): 1449-1455. DOI: 10.1016/j.avsg.2014.01.010.
[4] Laird JR, Zeller T, Holden A, et al. Balloon-expandable vascular covered stent in the treatment of iliac artery occlusive disease: 9-month results from the BOLSTER multicenter study[J]. J Vasc Interv Radiol, 2019, 30(6): 836-844.e1. DOI: 10.1016/j.jvir.2018.12.031.
[5] Panneton JM, Bismuth J, Gray BH, et al. Three-year follow-up of patients with iliac occlusive disease treated with the Viabahn balloon- expandable endoprosthesis[J]. J Endovasc Ther, 2020, 27(5): 728-736. DOI: 10.1177/1526602820920569.
[6] Mills JL, Conte MS, Murad MH. Critical review and evidence implications of paclitaxel drug-eluting balloons and stents in peripheral artery disease[J]. J Vasc Surg, 2019, 70(1): 3-7. DOI: 10.1016/j.jvs.2019.05.002.
[7] van Haelst ST, Peeters Weem SM, Moll FL, et al. Current status and future perspectives of bioresorbable stents in peripheral arterial disease[J]. J Vasc Surg, 2016, 64(4): 1151-1159.e1. DOI: 10.1016/j.jvs.2016.05.044.
[8] Bosiers M. Leaving nothing behind[J]. JACC Cardiovasc Interv, 2013, 6(12): 1294. DOI: 10.1016/j.jcin.2013.10.005.
[9] Vadia R, Malyar N, Stargardt T. Cost-utility analysis of early versus delayed endovascular intervention in critical limb-threatening ischemia patients with rest pain[J]. J Vasc Surg, 2023, 77(1): 299-308.e2. DOI: 10.1016/j.jvs.2022.07.007.
[10] Shishehbor MH, Scheinert D, Jain A, et al. Comparison of drug-coated balloons vs bare-metal stents in patients with femoropopliteal arterial disease[J]. J Am Coll Cardiol, 2023, 81(3): 237-249. DOI: 10.1016/j.jacc.2022.10.016.
[11] Enzmann FK, Nierlich P, Aspalter M, et al. Nitinol stent versus bypass in long femoropopliteal lesions: 2-year results of a randomized controlled trial[J]. JACC Cardiovasc Interv, 2019, 12(24): 2541-2549. DOI: 10.1016/j.jcin.2019.09.006.
[12] Aihara H, Soga Y, Mii S, et al. Comparison of long-term outcome after endovascular therapy versus bypass surgery in claudication patients with Trans-Atlantic Inter-Society Consensus-II C and D femoropopliteal disease[J]. Circ J, 2014, 78(2): 457-464. DOI: 10.1253/circj.cj-13-1147.
[13] Soga Y, Iida O, Hirano K, et al. Mid-term clinical outcome and predictors of vessel patency after femoropopliteal stenting with self-expandable nitinol stent[J]. J Vasc Surg, 2010, 52(3): 608-615. DOI: 10.1016/j.jvs.2010.03.050.
[14] 殷敏毅, 王旭辉. 下肢股腘动脉生物力学特点和常用支架的选择[J]. 中华血管外科杂志, 2019, 4(3): 141-144. DOI: 10.3760/cma.j.issn.2096-1863.2019.03.004.
[15] Soga Y, Takahara M, Iida O, et al. Ten-year clinical follow-up following bare-nitinol stent implantation for femoropopliteal artery disease[J]. J Atheroscler Thromb, 2022, 29(10): 1448-1457. DOI: 10.5551/jat.63225.
[16] Abdoli S, Mert M, Lee WM, et al. Network meta-analysis of drug-coated balloon angioplasty versus primary nitinol stenting for femoropopliteal atherosclerotic disease[J]. J Vasc Surg, 2021, 73(5): 1802-1810.e4. DOI: 10.1016/j.jvs.2020.10.075.
[17] Koeckerling D, Raguindin PF, Kastrati L, et al. Endovascular revascularization strategies for aortoiliac and femoropopliteal artery disease: a meta-analysis[J]. Eur Heart J, 2023, 44(11): 935-950. DOI: 10.1093/eurheartj/ehac722.
[18] 中华医学会外科学分会血管外科学组. 下肢动脉硬化闭塞症诊治指南[J]. 中华医学杂志, 2015, 95(24): 1883-1896. DOI: 10.3760/cma.j.issn.0376-2491.2015.24.004.
[19] Aboyans V, Ricco JB, Bartelink MEL, et al. 2017 ESC Guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: the European Stroke Organization (ESO)The Task Force for the diagnosis and treatment of peripheral arterial diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS)[J]. Eur Heart J, 2018, 39(9): 763-816. DOI: 10.1093/eurheartj/ehx095.
[20] 国家心血管病专家委员会血管外科专业委员会下肢动脉疾病学组, 中国医药教育协会血管外科专业委员会. 股腘动脉闭塞症的诊断和治疗中国专家共识[J]. 中国循环杂志, 2022, 37(7): 669-676. DOI: 10.3969/j.issn.1000- 3614.2022.07.003.
[21] Nordanstig J, Behrendt CA, Baumgartner I, et al. Editor's choice -- European Society for Vascular Surgery (ESVS) 2024 Clinical Practice Guidelines on the management of asymptomatic lower limb peripheral arterial disease and intermittent claudication[J]. Eur J Vasc Endovasc Surg, 2024, 67(1): 9-96. DOI: 10.1016/j.ejvs.2023.08.067.
[22] Liistro F, Angioli P, Porto I, et al. Drug-eluting balloon versus drug-eluting stent for complex femoropopliteal arterial lesions: the DRASTICO study[J]. J Am Coll Cardiol, 2019, 74(2): 205-215. DOI: 10.1016/j.jacc.2019.04.057.
[23] Bausback Y, Wittig T, Schmidt A, et al. Drug-eluting stent versus drug-coated balloon revascularization in patients with femoropopliteal arterial disease[J]. J Am Coll Cardiol, 2019, 73(6): 667-679. DOI: 10.1016/j.jacc.2018.11.039.
[24] He R, Ye Y, Li Z, et al. Restenosis prevention with drug eluting or covered stents in femoropopliteal arterial occlusive disease: evidence from a comprehensive network meta-analysis[J]. Eur J Vasc Endovasc Surg, 2019, 58(1): 61-74. DOI: 10.1016/j.ejvs.2018.12.020.
[25] Miura T, Miyashita Y, Soga Y, et al. Drug-eluting versus bare-metal stent implantation with or without cilostazol in the treatment of the superficial femoral artery[J]. Circ Cardiovasc Interv, 2018, 11(8): e006564. DOI: 10.1161/circinterventions.118.006564.
[26] Iida O, Takahara M, Soga Y, et al. 1-year results of the ZEPHYR Registry (Zilver PTX for the femoral artery and proximal popliteal artery): predictors of restenosis[J]. JACC Cardiovasc Interv, 2015, 8(8): 1105-1112. DOI: 10.1016/j.jcin.2015.03.022.
[27] Gouëffic Y, Sauguet A, Desgranges P, et al. A polymer-free paclitaxel-eluting stent versus a bare-metal stent for de novo femoropopliteal lesions: the BATTLE trial[J]. JACC Cardiovasc Interv, 2020, 13(4): 447-457. DOI: 10.1016/j.jcin.2019.12.028.
[28] Gouëffic Y, Torsello G, Zeller T, et al. Efficacy of a drug-eluting stent versus bare metal stents for symptomatic femoropopliteal peripheral artery disease: primary results of the EMINENT randomized trial[J]. Circulation, 2022, 146(21): 1564-1576. DOI: 10.1161/circulationaha.122.059606.
[29] Gray WA, Keirse K, Soga Y, et al. A polymer-coated, paclitaxel-eluting stent (Eluvia) versus a polymer-free, paclitaxel-coated stent (Zilver PTX) for endovascular femoropopliteal intervention (IMPERIAL): a randomised, non-inferiority trial[J]. Lancet, 2018, 392(10157): 1541-1551. DOI: 10.1016/s0140-6736(18)32262-1.
[30] Tomoi Y, Kuramitsu S, Soga Y, et al. Vascular response after FP-PES versus polymer-free paclitaxel-eluting stent implantation in femoropopliteal artery lesions: a serial intravascular ultrasound study[J]. JACC Cardiovasc Interv, 2020, 13(4): 535-537. DOI: 10.1016/j.jcin.2019.08.043.
[31] Steiner S, Sauguet A, Langhoff R, et al. First-in-human experience with sirolimus-eluting self-expanding stent for femoropopliteal lesions[J]. J Am Coll Cardiol, 2019, 74(17): 2216-2218. DOI: 10.1016/j.jacc.2019.08.1019.
[32] Tsujimura T, Takahara M, Iida O, et al. Clinical outcomes of polymer-free, paclitaxel-coated stents vs stent grafts in peripheral arterial disease patients with femoropopliteal artery lesions[J]. J Vasc Surg, 2021, 73(6): 1998-2008.e1. DOI: 10.1016/j.jvs.2020.12.061.
[33] van Hattum ES, Hazenberg C. Stent graft thrombosis in femoropopliteal arterial lesions[J]. JACC Cardiovasc Interv, 2021, 14(10): 1148-1150. DOI: 10.1016/j.jcin.2021.04.023.
[34] Ohki T, Kichikawa K, Yokoi H, et al. Long-term results of the Japanese multicenter Viabahn trial of heparin bonded endovascular stent grafts for long and complex lesions in the superficial femoral artery[J]. J Vasc Surg, 2021, 74(6): 1958-1967.e2. DOI: 10.1016/j.jvs.2021.05.056.
[35] Katsanos K, Al-Lamki SA, Parthipun A, et al. Peripheral stent thrombosis leading to acute limb ischemia and major amputation: incidence and risk factors in the aortoiliac and femoropopliteal arteries[J]. Cardiovasc Intervent Radiol, 2017, 40(3): 351-359. DOI: 10.1007/s00270-016-1513-0.
[36] Vartanian SM, Johnston PC, Walker JP, et al. Clinical consequence of bare metal stent and stent graft failure in femoropopliteal occlusive disease[J]. J Vasc Surg, 2013, 58(6): 1525-1531. DOI: 10.1016/j.jvs.2013.05.094.
[37] Ichihashi S, Takahara M, Iida O, et al. Clinical impact of stent graft thrombosis in femoropopliteal arterial lesions[J]. JACC Cardiovasc Interv, 2021, 14(10): 1137-1147. DOI: 10.1016/j.jcin.2021.03.030.
[38] Bontinck J, Goverde P, Schroë H, et al. Treatment of the femoropopliteal artery with the bioresorbable REMEDY stent[J]. J Vasc Surg, 2016, 64(5): 1311-1319. DOI: 10.1016/j.jvs.2016.05.066.
[39] Lammer J, Bosiers M, Deloose K, et al. Bioresorbable everolimus-eluting vascular scaffold for patients with peripheral artery disease (ESPRIT I): 2-year clinical and imaging results[J]. JACC Cardiovasc Interv, 2016, 9(11): 1178-1187. DOI: 10.1016/j.jcin.2016.02.051.
[40] 魏立春, 谷涌泉, 郭连瑞, 等. 下肢动脉腔内载药治疗的现状及进展[J]. 中华血管外科杂志, 2023, 8(1): 58-63. DOI: 10.3760/cma.j.cn101411-20220728-00073.
[41] Katsanos K, Spiliopoulos S, Kitrou P, et al. Risk of death following application of paclitaxel-coated balloons and stents in the femoropopliteal artery of the leg: a systematic review and meta-analysis of randomized controlled trials[J]. J Am Heart Assoc, 2018, 7(24): e011245. DOI: 10.1161/jaha.118.011245.
版权声明:本平台旨在帮助医疗卫生专业人士更好地了解相关疾病领域最新进展。本平台对发布的资讯内容,并不代表同意其描述和观点,仅为提供更多信息。若涉及版权问题,烦请权利人与我们联系,我们将尽快处理。仅供医疗卫生专业人士为了解资讯使用,该等信息不能以任何方式取代专业的医疗指导,也不应被视为诊疗建议。如该等信息被用于了解资讯以外的目的,本平台及作者不承担相关责任。合作联系邮箱:981686121@qq.com。