[1] López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging. Cell 2013, 153, 1194.
[2] Efeyan, A.; Comb, W.C.; Sabatini, D.M. Nutrient-Sensing Mechanisms and Pathways. Nature 2015, 517, 302–310.
[3] Werner, H. The IGF1 Signaling Pathway: From Basic Concepts to Therapeutic Opportunities. International Journal of Molecular Sciences 2023, Vol. 24, Page 14882 2023, 24, 14882.
[4] Berk, Ş. Insulin and IGF-1 Extend the Lifespan of Caenorhabditis Elegans by Inhibiting Insulin/Insulin-like Signaling and MTOR Signaling Pathways: C. Elegans – Focused Cancer Research. Biochem Biophys Res Commun 2024, 729, 150347.
[5] Giannakou, M.E.; Partridge, L. Role of Insulin-like Signalling in Drosophila Lifespan. Trends Biochem Sci 2007, 32, 180–188.
[6] Junnila, R.K.; List, E.O.; Berryman, D.E.; Murrey, J.W.; Kopchick, J.J. The GH/IGF-1 Axis in Ageing and Longevity. Nature Reviews Endocrinology 2013 9:6 2013, 9, 366–376.
[7] Martins, R.; Lithgow, G.J.; Link, W. Long Live FOXO: Unraveling the Role of FOXO Proteins in Aging and Longevity. Aging Cell 2016, 15, 196–207.
[8] Song, Y.H.; Song, J.L.; Delafontaine, P.; Godard, M.P. The Therapeutic Potential of IGF-I in Skeletal Muscle Repair. Trends Endocrinol Metab 2013, 24, 310–319.
[9] Bian, A.; Ma, Y.; Zhou, X.; Guo, Y.; Wang, W.; Zhang, Y.; Wang, X. Association between Sarcopenia and Levels of Growth Hormone and Insulin-like Growth Factor-1 in the Elderly. BMC Musculoskelet Disord 2020, 21, 1–9.
[10] Talbot, K.; Wang, H.Y.; Kazi, H.; Han, L.Y.; Bakshi, K.P.; Stucky, A.; Fuino, R.L.; Kawaguchi, K.R.; Samoyedny, A.J.; Wilson, R.S.; et al. Demonstrated Brain Insulin Resistance in Alzheimer’s Disease Patients Is Associated with IGF-1 Resistance, IRS-1 Dysregulation, and Cognitive Decline. Journal of Clinical Investigation 2012, 122, 1316–1338.
[11] Wyss-Coray, T. Ageing, Neurodegeneration and Brain Rejuvenation. Nature 2016, 539, 180–186.
[12] Sonntag, W.E.; Ramsey, M.; Carter, C.S. Growth Hormone and Insulin-like Growth Factor-1 (IGF-1) and Their Influence on Cognitive Aging. Ageing Res Rev 2005, 4, 195–212.
[13] Liu, F.; Ye, S.; Zhao, L.; Niu, Q. The Role of IGF/IGF-1R Signaling in the Regulation of Cancer Stem Cells. Clinical and Translational Oncology 2024 2024, 1–11.
[14] Hua, H.; Kong, Q.; Yin, J.; Zhang, J.; Jiang, Y. Insulin-like Growth Factor Receptor Signaling in Tumorigenesis and Drug Resistance: A Challenge for Cancer Therapy. J Hematol Oncol 2020, 13, 64.
[15] Lero, M.W.; Shaw, L.M. Diversity of Insulin and IGF Signaling in Breast Cancer: Implications for Therapy. Mol Cell Endocrinol 2021, 527, 111213.
[16] Toth, L.; Czigler, A.; Hegedus, E.; Komaromy, H.; Amrein, K.; Czeiter, E.; Yabluchanskiy, A.; Koller, A.; Orsi, G.; Perlaki, G.; et al. Age-Related Decline in Circulating IGF-1 Associates with Impaired Neurovascular Coupling Responses in Older Adults. Geroscience 2022, 44, 2771–2783.
[17] Barbieri, M.; Ferrucci, L.; Ragno, E.; Corsi, A.; Bandinelli, S.; Bonafé, M.; Olivieri, F.; Giovagnetti, S.; Franceschi, C.; Guralnik, J.M.; et al. Chronic Inflammation and the Effect of IGF-I on Muscle Strength and Power in Older Persons. Am J Physiol Endocrinol Metab 2003, 284.
[18] Jiang, J. jin; Chen, S. min; Chen, J.; Wu, L.; Ye, J. ting; Zhang, Q. Serum IGF-1 Levels Are Associated with Sarcopenia in Elderly Men but Not in Elderly Women. Aging Clin Exp Res 2022, 34, 2465–2471.
[19] Laron, Z. Laron Syndrome (Primary Growth Hormone Resistance or Insensitivity): The Personal Experience 1958-2003. Journal of Clinical Endocrinology and Metabolism 2004, 89, 1031–1044.
[20] Bang, P.; Group, on behalf of the E.-I.R.S.; Woelfle, J.; Group, on behalf of the E.-I.R.S.; Perrot, V.; Group, on behalf of the E.-I.R.S.; Sert, C.; Group, on behalf of the E.-I.R.S.; Polak, M.; Group, on behalf of the E.-I.R.S. Effectiveness and Safety of RhIGF1 Therapy in Patients with or without Laron Syndrome. Eur J Endocrinol 2021.
[21] Laron, Z.; Kauli, R. Fifty Seven Years of Follow-up of the Israeli Cohort of Laron Syndrome Patients-From Discovery to Treatment. Growth Hormone and IGF Research 2016, 28, 53–56.
[22] Arosio, B.; Ferri, E.; Mari, D.; Vitale, G. The Heterogeneous Approach to Reach Longevity: The Experience of Italian Centenarians. JOURNAL OF GERONTOLOGY AND GERIATRICS 2024, 72, 24–31.
[23] Martins, R.; Lithgow, G.J.; Link, W. Long Live FOXO: Unraveling the Role of FOXO Proteins in Aging and Longevity. Aging Cell 2016, 15.
[24] Laplante, M.; Sabatini, D.M. MTOR Signaling in Growth Control and Disease. Cell 2012, 149, 274–293.
[25] Sabatini, D.M. Twenty-Five Years of MTOR: Uncovering the Link from Nutrients to Growth. Proc Natl Acad Sci U S A 2017, 114, 11818–11825.
[26] Islam, M.T.; Hall, S.A.; Dutson, T.; Bloom, S.I.; Bramwell, R.C.; Kim, J.; Tucker, J.R.; Machin, D.R.; Donato, A.J.; Lesniewski, L.A. Endothelial Cell-Specific Reduction in MTOR Ameliorates Age-Related Arterial and Metabolic Dysfunction. Aging Cell 2024, 23.
[27] Baghdadi, M.; Nespital, T.; Monzó, C.; Deelen, J.; Grönke, S.; Partridge, L. Intermittent Rapamycin Feeding Recapitulates Some Effects of Continuous Treatment While Maintaining Lifespan Extension. Mol Metab 2024, 81, 101902.
[28] Mannick, J.B.; Lamming, D.W. Targeting the Biology of Aging with MTOR Inhibitors. Nat Aging 2023, 3, 642–660.
[29] Allard, C.; Miralpeix, C.; López-Gambero, A.J.; Cota, D. MTORC1 in Energy Expenditure: Consequences for Obesity. Nature Reviews Endocrinology 2024 20:4 2024, 20, 239–251.
[30] Chen, M.; Tan, J.; Jin, Z.; Jiang, T.; Wu, J.; Yu, X. Research Progress on Sirtuins (SIRTs) Family Modulators. Biomed Pharmacother 2024, 174.
[31] Rogina, B.; Tissenbaum, H.A. SIRT1, Resveratrol and Aging. Front Genet 2024, 15.
[32] Chen, B.; Zang, W.; Wang, J.; Huang, Y.; He, Y.; Yan, L.; Liu, J.; Zheng, W. The Chemical Biology of Sirtuins. Chem Soc Rev 2015, 44, 5246–5264.
[33] Imai, S. ichiro; Guarente, L. NAD+ and Sirtuins in Aging and Disease. Trends Cell Biol 2014, 24, 464–471.
[34] Sugishita, Y.; Suzuki-Takahashi, Y.; Yudoh, K. Nicotinamide Adenine Dinucleotide (NAD)-Dependent Protein Deacetylase, Sirtuin, as a Biomarker of Healthy Life Expectancy: A Mini-Review. Curr Aging Sci 2024, 17.
[35] Haigis, M.C.; Sinclair, D.A. Mammalian Sirtuins: Biological Insights and Disease Relevance. Annual Review of Pathology: Mechanisms of Disease 2010, 5, 253–295.
[36] Morris, B.; Willcox, D.; Donlon, T.; Willcox, B. Fox03- A Major Gene for Human Longevity. Gerontology 2015, 61, 515–525.
[37] Boutant, M.; Cantó, C. SIRT1 Metabolic Actions: Integrating Recent Advances from Mouse Models. Mol Metab 2014, 3, 5–18.
[38] Mouchiroud, L.; Houtkooper, R.H.; Moullan, N.; Katsyuba, E.; Ryu, D.; Cantó, C.; Mottis, A.; Jo, Y.S.; Viswanathan, M.; Schoonjans, K.; et al. The NAD+/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell 2013, 154, 430.
[39] Yang, Y.; Liu, Y.; Wang, Y.; Chao, Y.; Zhang, J.; Jia, Y.; Tie, J.; Hu, D. Regulation of SIRT1 and Its Roles in Inflammation. Front Immunol 2022, 13.
[40] Nemoto, S.; Fergusson, M.M.; Finkel, T. SIRT1 Functionally Interacts with the Metabolic Regulator and Transcriptional Coactivator PGC-1α. Journal of Biological Chemistry 2005, 280, 16456–16460.
[41] Roichman, A.; Elhanati, S.; Aon, M.A.; Abramovich, I.; Di Francesco, A.; Shahar, Y.; Avivi, M.Y.; Shurgi, M.; Rubinstein, A.; Wiesner, Y.; et al. Restoration of Energy Homeostasis by SIRT6 Extends Healthy Lifespan. Nature Communications 2021 12:1 2021, 12, 1–18.
[42] Guo, Z.; Li, P.; Ge, J.; Li, H. SIRT6 in Aging, Metabolism, Inflammation and Cardiovascular Diseases. Aging Dis 2022, 13, 1787.
[43] Xu, H.; Gan, C.; Gao, Z.; Huang, Y.; Wu, S.; Zhang, D.; Wang, X.; Sheng, J. Caffeine Targets SIRT3 to Enhance SOD2 Activity in Mitochondria. Front Cell Dev Biol 2020, 8, 559753.
[44] Lu, J.; Zhang, H.; Chen, X.; Zou, Y.; Li, J.; Wang, L.; Wu, M.; Zang, J.; Yu, Y.; Zhuang, W.; et al. A Small Molecule Activator of SIRT3 Promotes Deacetylation and Activation of Manganese Superoxide Dismutase. Free Radic Biol Med 2017, 112, 287–297.
[45] Fang, Y.; An, N.; Zhu, L.; Gu, Y.; Qian, J.; Jiang, G.; Zhao, R.; Wei, W.; Xu, L.; Zhang, G.; et al. Autophagy-Sirt3 Axis Decelerates Hematopoietic Aging. Aging Cell 2020, 19, e13232.
[46] Rogina, B.; Helfand, S.L. Sir2 Mediates Longevity in the Fly through a Pathway Related to Calorie Restriction. Proc Natl Acad Sci U S A 2004, 101, 15998–16003.
[47] Tissenbaum, H.A.; Guarente, L. Increased Dosage of a Sir-2 Gene Extends Lifespan in Caenorhabditis Elegans. Nature 2001 410:6825 2001, 410, 227–230.
[48] Wu, L.E.; Fiveash, C.E.; Bentley, N.L.; Kang, M.J.; Govindaraju, H.; Barbour, J.A.; Wilkins, B.P.; Hancock, S.E.; Madawala, R.; Das, A.; et al. SIRT2 Transgenic Over-Expression Does Not Impact Lifespan in Mice. Aging Cell 2023, 22, e14027.
[49] Mishra, D.; Mohapatra, L.; Tripathi, A.S.; Paswan, S.K. The Influential Responsibility of Sirtuins in Senescence and Associated Diseases: A Review. J Biochem Mol Toxicol 2024, 38, e23812.
[50] Penugurti, V.; Manne, R.K.; Bai, L.; Kant, R.; Lin, H.K. AMPK: The Energy Sensor at the Crossroads of Aging and Cancer. Semin Cancer Biol 2024, 106–107, 15–27.
[51] Zhang, T.; Jing, M.; Fei, L.; Zhang, Z.; Yi, P.; Sun, Y.; Wang, Y. Tetramethylpyrazine Nitrone Delays the Aging Process of C. Elegans by Improving Mitochondrial Function through the AMPK/MTORC1 Signaling Pathway. Biochem Biophys Res Commun 2024, 723, 150220.
[52] Su, Y.; Wang, T.; Wu, N.; Li, D.; Fan, X.; Xu, Z.; Mishra, S.K.; Yang, M. Alpha-Ketoglutarate Extends Drosophila Lifespan by Inhibiting MTOR and Activating AMPK. Aging (Albany NY) 2019, 11, 4183.
[53] Herzig, S.; Shaw, R.J.. AMPK: guardian of metabolism and mitochondrial homeostasis Nat Rev Mol Cell Biol 2018, 19, 121–135.
[54] Zhang, C.S.; Li, M.; Ma, T.; Zong, Y.; Cui, J.; Feng, J.W.; Wu, Y.Q.; Lin, S.Y.; Lin, S.C. Metformin Activates AMPK through the Lysosomal Pathway. Cell Metab 2016, 24, 521–522.
[55] Višnjić, D.; Lalić, H.; Dembitz, V.; Tomić, B.; Smoljo, T. AICAr, a Widely Used AMPK Activator with Important AMPK-Independent Effects: A Systematic Review. Cells 2021, Vol. 10, Page 1095 2021, 10, 1095.
[56] Wang, Z.; Zhang, L.; Liang, Y.; Zhang, C.; Xu, Z.; Zhang, L.; Fuji, R.; Mu, W.; Li, L.; Jiang, J.; et al. Cyclic AMP Mimics the Anti-Ageing Effects of Calorie Restriction by Up-Regulating Sirtuin. Scientific Reports 2015 5:1 2015, 5, 1–10.
[57] van Nostrand, J.L.; Hellberg, K.; Luo, E.C.; van Nostrand, E.L.; Dayn, A.; Yu, J.; Shokhirev, M.N.; Dayn, Y.; Yeo, G.W.; Shaw, R.J. AMPK Regulation of Raptor and TSC2 Mediate Metformin Effects on Transcriptional Control of Anabolism and Inflammation. Genes Dev 2020, 34, 1330–1344.
▌更多精彩内容
我们为什么会衰老? 科学抗衰老, 蛋白质稳态让你的年龄倒着走!
为什么我们会衰老?| 表观遗传变化, 影响衰老并重新定义年龄.
▌作者简介
微+:Times_075.
▌衰老(甲基化年龄)检测案例
感恩遇见,点亮在看