外刊阅读 | 自然 | 机器学习先驱荣获诺贝尔物理学奖

文摘   2024-10-12 07:30   中国香港  
   扫码加关注  
精彩文章读不停    

   

星标我,不迷路!


上期答案



The road ahead is long; I seek it out with firmness.

路漫漫其修远兮,吾将上下而求索。

本期内容



导读

早上好,读者朋友们,今天分享的文章选自《自然》。在2024年的诺贝尔物理学奖颁奖典礼上,机器学习领域的两位先驱——美国物理学家约翰·霍普菲尔德(John J. Hopfield)和英裔加拿大计算机科学家杰弗里·辛顿(Geoffrey E. Hinton)荣获殊荣,这一决定不仅让科学界感到惊喜,也再次证明了交叉学科研究的巨大潜力。两位科学家的研究不仅推动了机器学习的快速发展,还广泛影响了物理学、化学、生物学等多个领域。他们的成果为开发具有特定性能的新材料、优化计算等提供了强有力的支持。


Physics Nobel scooped by machine-learning pioneers

机器学习先驱荣获诺贝尔物理学奖

1







Two researchers who developed tools for understanding the neural networks that underpin today’s boom in artificial intelligence (AI) have won the 2024 Nobel Prize in Physics. John Hopfield at Princeton University in New Jersey, and Geoffrey Hinton at the University of Toronto, Canada, share the 11-million Swedish kronor (US$1 million) prize, announced by the Royal Swedish Academy of Sciences in Stockholm on 8 October.



underpin /ˌʌndərˈpɪn/ v.加强,巩固

krona(kronor) /ˈkroʊnə/ n. 克朗(瑞典和冰岛的货币单位)


点击下方查看翻译


两位研究人员因开发出理解当今人工智能 (AI) 发展所依赖的神经网络的工具而获得了 2024 年诺贝尔物理学奖。10 月 8 日,瑞典皇家科学院在斯德哥尔摩宣布,美国新泽西州普林斯顿大学的约翰·霍普菲尔德和加拿大多伦多大学的杰弗里·辛顿共享 1100 万瑞典克朗(100 万美元)的奖金。



Both used tools from physics to come up with methods that power artificial neural networks, which exploit brain-inspired, layered structures to learn abstract concepts. Their discoveries “form the building blocks of machine learning, that can aid humans in making faster and more-reliable decisions”, said Nobel physics committee chair Ellen Moons, a physicist at Karlstad University, Sweden, during the prize announcement. “Artificial neural networks have been used to advance research across physics topics as diverse as particle physics, material science and astrophysics.”



aid  v.援助

aid and abet  帮助和教唆

diverse /daɪˈvɜːrs/ adj.多种多样的

machine learning  机器学习:计算机通过不断将新数据纳入现有的统计模型,从而提高自身性能的过程


点击下方查看翻译

两位科学家都利用物理学工具提出了驱动人工神经网络的方法,利用大脑启发的分层结构来学习抽象概念。诺贝尔物理学奖委员会主席、瑞典卡尔斯塔德大学物理学家埃伦·穆恩斯在颁奖典礼上表示,他们的发现“构成了机器学习的基石,可以帮助人类做出更快、更可靠的决策”。“人工神经网络已用于推动粒子物理学、材料科学和天体物理学等各种物理学主题的研究。”




In 1982, Hopfield, a theoretical biologist with a background in physics, came up with a network that described connections between virtual neurons as physical forces. By storing patterns as a low-energy state of the network, the system was able to re-create these patterns when prompted with something similar. It became known as associative memory, because the way in which it ‘recalls’ things is similar to the brain trying to remember a word or concept on the basis of related information.Hinton, a computer scientist, used principles from statistical physics to further develop the ‘Hopfield network’. By building probabilities into a layered version of the network, he created a tool that could recognize and classify images, or generate new examples of the type that it was trained on.



associative /əˈsoʊsieɪtɪv/ adj.联想的

probability /ˌprɑːbəˈbɪləti/ n. 可能性,概率

classify /ˈklæsɪfaɪ/ v. 把……分类


点击下方查看翻译

1982 年,具有物理学背景的理论生物学家霍普菲尔德提出了一个网络,将虚拟神经元之间的连接描述为物理力。通过将模式存储为网络的低能量状态,系统能够在提示类似内容时重新创建这些模式。它被称为联想记忆,因为它“回忆”事物的方式类似于大脑试图根据相关信息记住单词或概念的方式。计算机科学家 Hinton 利用统计物理学原理进一步开发了“Hopfield 网络”。通过在网络的分层中计算概率,他创建了一种可以识别和分类图像的工具,或者生成训练时所用类型的新示例。




Hinton also won the A. M. Turing Award in 2018 — sometimes described as the ‘Nobel of computer science’. Hopfield, too, has won several other prestigious physics awards, including the 2001 Dirac Medal. Hopfield’s “motivation was really physics, and he invented this model of physics to understand certain phases of matter”, says Karl Jansen, a physicist at the German Electron Synchrotron (DESY) in Zeuthen, who describes the work as “groundbreaking”. After decades of development, neural networks have become an important tool in analyzing data from physics experiments and in understanding the types of transitions between phases that Hopfield had set out to study, Jansen adds.



prestigious /preˈstiːdʒəs/ adj.有声望的

groundbreaking /ˈɡraʊndbreɪkɪŋ/ adj. 开创性的

neural network  神经网络


点击下方查看翻译


Hinton在2018年还荣获了A.M.图灵奖,该奖项有时被誉为“计算机科学界的诺贝尔奖”。同样,Hopfield也赢得了包括2001年狄拉克奖章在内的多个著名的物理学奖项。位于蔡伦根的德国电子同步加速器研究中心(DESY)的物理学家Karl Jansen表示:“Hopfield的初衷是物理,他发明了这个物理模型来理解物质的某些阶段。”Jansen还补充道,经过数十年的发展,神经网络已成为分析物理实验数据以及理解Hopfield着手研究的各阶段之间过渡类型的重要工具。




Speaking by telephone during the physics-prize announcement, Hinton said that learning he had won the Nobel was “a bolt from the blue”. “I’m flabbergasted, I had no idea this would happen,” he said. He added that advances in machine learning “will have a huge influence, it will be comparable with the industrial revolution. But instead of exceeding people in physical strength, it’s going to exceed people in intellectual ability”.


bolt /boʊlt/ n.闪电

a bolt from the blue  晴天霹雳;突如其来的事情

comparable /ˈkɑːmpərəb(ə)l/ adj. 可比的

exceed /ɪkˈsiːd/ v. 超过


点击下方查看翻译


在美国,模型制定者依赖于合理使用的法律概念,该概念为该国原本严厉的版权法提供了广泛的豁免。一个令人鼓舞的先例来自 2015 年对谷歌图书的一项裁决。美国作家协会起诉这家搜索巨头未经许可扫描受版权保护的书籍。但法院发现,谷歌对这些材料的使用——使书籍可搜索,但只显示小部分摘录——具有足够的“变革性”,可以视为合理使用。生成式人工智能公司辩称,他们对受版权保护材料的使用同样具有变革性。与此同时,版权持有者则寄希望于去年最高法院的一项裁决,该裁决认为安迪·沃霍尔的一系列艺术品(这些艺术品对流行歌星普林斯的一张受版权保护的照片进行了改动)但其变革性不足以构成合理使用。


Journal:Nature

Title:Physics Nobel scooped by machine-learning pioneers(08 October 2024)

Category:Nobel Prize


END





写作句式积累

Across disciplines as varied as biology, physics, mathematics and social science, artificial intelligence (AI) is transforming the scientific enterprise.

人工智能 (AI) 正在改变生物学、物理学、数学和社会科学等各个学科的科学事业。




翻译练习

Neural networks that mimic human learning form the basis of many state-of-the-art AI tools, from large language models to machine-learning algorithms capable of analysing large swathes of data, including the protein-structure-prediction model AlphaFold.






翻译练习,欢迎大家文末留言打卡,下期推送文章公布答案哟,一起阅外刊学英语吧!

获取完整版PDF 下载后及时转存:

网盘链接:https://pan.quark.cn/s/e79e82d75f49


点击下方链接查看往期文章 ↓ ↓ ↓记得点关注哟

扫码关注我的视频号

 



分享

收藏

点赞

在看

分享,收藏,点赞与在看,至少我要拥有一个吧↓↓↓

阅外刊学英语
本订阅号定期更新英语外刊,助您提升英语阅读能力!精心挑选卫报、大西洋月刊、经济学人、新闻周刊、麻神理工技术评论等热门外刊文章,涵盖新闻、科技、文化、时尚、生活多个领域。无论您的英语水平,我们都有适合的内容。快来和我们一起开启英语学习之旅吧!
 最新文章