B族维生素能降低骨质疏松骨折风险吗?

健康   健康   2024-07-10 20:00   陕西  
 
Edited by Spine Truth Editorial Team
脊柱甘露语林®中国助学网西安站
学术•疾病与健康科普•助学•公益行
3221天,第1755
编辑:张军 主任医师   
审校 总编辑:王海强 教授

骨骼健康是人类一生中至关重要的方面,重点是要关注骨骼的质量和结构。正常的骨量和骨骼结构是通过青春期骨骼的密集形成发展而来的,并通过一生的骨骼重塑来维持。[1,2]。这两个过程分别以成骨细胞为主的骨生成和破骨细胞为主的骨吸收为中心[3]。因此,骨密度(bone mineral density, BMD)和骨转换标志物(bone turnover markers, BTMs)是反映骨骼健康的众多指标中的两个重要方面,而骨折则是严重影响生活质量的病理状况[4,5,6,7,8]。

在成人中,骨骼矿物质质量由骨骼在骨骼生长结束时积累的量决定,即峰值骨量,以及一生中丢失的骨量[7]. 据估计,峰值骨量每增加10%可将成年后发生骨质疏松性骨折的风险降低50%[9]。一生中大约在30岁时骨量达到峰值。从50岁开始,平均骨量每年损失0.5%至1%[10]。骨密度(BMD)降低到一定程度表现为骨质疏松症,即骨密度比“年轻且正常”成年人的平均值低1.0至2.5个标准差(T值介于-1.0至-2.5之间)。T值低于-2.5则定义为骨质疏松症[10]。
然而,仅凭BMD无法完全反映骨骼健康和骨质疏松性骨折的风险[11, 12]。骨形成细胞(osteoblast)和破骨细胞(osteoclast)的产物——骨代谢标志物(BTMs)与BMD一起作为衡量骨骼健康的重要指标[4]。骨折的发生意味着严重的骨骼损伤,并将严重影响患者的生活质量。到50岁时,女性患骨质疏松性骨折的风险约为50%,男性约为20%[13, 14]。例如,髋部骨折是老年人面临的主要健康问题之一,与较高的死亡率密切相关,给患者、医疗保健系统和社会带来负担[15]。因此,预防和治疗骨骼健康的丢失逐渐成为社会医疗保健的重点。
骨骼健康与许多因素有关,如昼夜节律、雌激素分泌、适当的机械负荷以及高质量骨骼肌的内分泌功能[16,17,18,19]。因此,有许多推荐的方法来维持骨骼健康,如运动、保证睡眠时间,甚至有研究证明冲击波疗法对改善局部骨密度有效[20,21]。
在众多推荐的方法中,每日补充相关营养素可能是一种潜在有效的方法[22]。近年来的研究表明,维生素B(VB)补充剂可以通过影响胶原交联的形成或降低血清同型半胱氨酸等多种途径降低骨质疏松症、骨折甚至骨质疏松的风险[23,24,25]。维生素B12(VB12)和叶酸在同型半胱氨酸代谢中起着重要作用,是甲硫氨酸合成酶的辅因子。
但到目前为止,VB补充剂在临床试验中是否能降低骨质流失或骨折的风险仍存在争议。一些研究报告称,叶酸和VB12与骨折风险之间存在微小但显著的负相关关系[23,26,27,28,29]。然而,Garcia Lopez等人的研究表明,叶酸加维生素B12补充剂与髋部骨折的风险无关,而长期随访期间高剂量维生素B6(VB6)补充剂与髋部骨折的风险略有增加有关[30]。在一项预防骨质疏松性骨折的VBs试验中,研究人员发现,叶酸(每日400微克)和维生素B12(每日500微克)可降低80岁以上人群的骨折发生率[31]。


关于VB6与骨骼健康的流行病学研究有限。早期的一份研究报告称,髋部骨折患者的血浆PLP显著低于健康门诊患者[32]。Rotterdam研究显示,较低的VB6摄入量与较低的骨密度和更高的骨折风险有关[33],而Framingham骨质疏松症研究报告称,较低的血浆VB6水平与骨质疏松症和髋部骨折有关[34]。此外,一些研究试图阐明VB摄入量增加与BMD、BTMs或骨折风险之间的联系。Fu等人[35]使用孟德尔随机化方法分析维生素B6、叶酸和维生素B12与骨密度(BMD)和各部位骨折发生率之间的关系。研究结果表明,这三种维生素与各部位骨折的发生率无关,只有维生素B12与45岁以上人群的骨密度呈负相关。
基于这些争议性研究,近期有学者[36]发表了荟萃分析,利用现有的高质量随机对照试验(RCT)来揭示维生素补充剂对骨骼健康(包括骨密度、骨转换标志物和骨折发生率)的影响,最终获得更明确的结果。来自这项最新的随机对照试验的荟萃分析结果表明:现有证据不支持B族维生素可以有效影响骨质疏松性骨折风险、骨密度(BMD)和骨转换标志物(BTMs)

参考文献

1.Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396 

2. Liang B et al (2022) Osteoporosis pathogenesis and treatment: existing and emerging avenues. Cell Mol Biol Lett 27(1):72 

3. Compston JE, McClung MR, Leslie WD (2019) Osteoporosis. Lancet 393(10169):364–376 

4. Eastell R, Szulc P (2017) Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol 5(11):908–923 

5. Mousavibaygei SR, Bisadi A, ZareSakhvidi F (2023) Outdoor air pollution exposure, bone mineral density, osteoporosis, and osteoporotic fractures: A systematic review and meta-analysis. Sci Total Environ 865:161117 

6. Reid IR, Bolland MJ, Grey A (2014) Efects of vitamin D supplements on bone mineral density: a systematic review and metaanalysis. Lancet 383(9912):146–155 

7. Rizzoli R et al (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46(2):294–305 

8. van den Bergh JP, van Geel TA, Geusens PP (2012) Osteoporosis, frailty and fracture: implications for case fnding and therapy. Nat Rev Rheumatol 8(3):163–172 

9. Hernandez CJ, Beaupré GS, Carter DR (2003) A theoretical analysis of the relative infuences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int 14(10):843–847 

10. Kanis JA et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9(8):1137–1141

11. Giangregorio LM et al (2012) FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res 27(2):301–308 

12. Kim JW, Ha YC, Lee YK (2017) Factors afecting bone mineral density measurement after fracture in South Korea. J Bone Metab 24(4):217–222 

13. Kanis JA et al (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30(1):3–44 

14. Lippuner K et  al (2009) Remaining lifetime and absolute 10-year probabilities of osteoporotic fracture in Swiss men and women. Osteoporos Int 20(7):1131–1140 

15. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–1733 

16. Zhang L et  al (2022) Exercise for osteoporosis: a literature review of pathology and mechanism. Front Immunol 13:1005665 

17. Li G et al (2019) Muscle-bone crosstalk and potential therapies for sarco-osteoporosis. J Cell Biochem 120(9):14262–14273 

18. Lu L, Tian L (2023) Postmenopausal osteoporosis coexisting with sarcopenia: the role and mechanisms of estrogen. J Endocrinol 259(1):e230116. https://doi.org/10.1530/JOE-23-0116 

19. Tian Y, Ming J (2022) The role of circadian rhythm in osteoporosis; a review. Front Cell Dev Biol 10:960456 

20. Kemmler W et al (2020) Efects of diferent types of exercise on bone mineral density in postmenopausal women: a systematic review and meta-analysis. Calcif Tissue Int 107(5):409–439 

21. Swanson CM et al (2018) The importance of the circadian system & sleep for bone health. Metabolism 84:28–43 

22. Bermudez B et al (2023) Energy balance and bone health: a nutrient availability perspective. Curr Osteoporos Rep 21(1):77–84 

23. Bailey RL, van Wijngaarden JP (2015) The role of B-vitamins in bone health and disease in older adults. Curr Osteoporos Rep 13(4):256–261 

24. Dai Z, Koh WP (2015) B-vitamins and bone health–a review of the current evidence. Nutrients 7(5):3322–3346 

25. Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21(2):195–214 

26. Herrmann M et al (2007) The role of hyperhomocysteinemia as well as folate, vitamin B(6) and B(12) defciencies in osteoporosis: a systematic review. Clin Chem Lab Med 45(12):1621–1632 

27. Clements M et al (2022) A 2-year randomized controlled trial with low-dose B-vitamin supplementation shows benefts on bone mineral density in adults with lower B12 status. J Bone Miner Res 37(12):2443–2455

28. Enneman AW et al (2015) Efect of vitamin B12 and folic acid supplementation on bone mineral density and quantitative ultrasound parameters in older people with an elevated plasma homocysteine level: B-PROOF, a randomized controlled trial. Calcif Tissue Int 96(5):401–409 

29. Oliai Araghi S et al (2021) Long-term efects of folic acid and vitamin-B12 supplementation on fracture risk and cardiovascular disease: extended follow-up of the B-PROOF trial. Clin Nutr 40(3):1199–1206 

30. Garcia Lopez M et al (2017) B vitamins and hip fracture: secondary analyses and extended follow-up of two large randomized controlled trials. J Bone Miner Res 32(10):1981–1989 

31. van Wijngaarden JP et al (2014) Efect of daily vitamin B-12 and folic acid supplementation on fracture incidence in elderly individuals with an elevated plasma homocysteine concentration: B-PROOF, a randomized controlled trial. Am J Clin Nutr 100(6):1578–1586 

32. Reynolds TM, Marshall PD, Brain AM (1992) Hip fracture patients may be vitamin B6 defcient. controlled study of serum pyridoxal-5’-phosphate. Acta Orthop Scand 63(6):635–638

33. Yazdanpanah N et al (2007) Efect of dietary B vitamins on BMD and risk of fracture in elderly men and women: the Rotterdam study. Bone 41(6):987–994 

34. McLean RR et al (2008) Plasma B vitamins, homocysteine, and their relation with bone loss and hip fracture in elderly men and women. J Clin Endocrinol Metab 93(6):2206–2212 

35. Fu L, Wang Y, Hu YQ (2022) Inferring causal efects of homocysteine and B-vitamin concentrations on bone mineral density and fractures: Mendelian randomization analyses. Front Endocrinol (Lausanne) 13:1037546

36.  Luo Y, Zheng S, Jiang S, Yang G, Pavel V, Ji H, Zhou S, Bao Y, Xiao W, Li Y. B vitamins and bone health: a meta-analysis with trial sequential analysis of randomized controlled trials. Osteoporos Int. 2024 Jul 2. doi: 10.1007/s00198-024-07150-0. Epub ahead of print. PMID: 38953947


《脊柱甘露语林®》:人体低电离辐射拍片法

我助你,你助他,

杏林春暖助学饶益你我他。

             ——中国助学网西安工作站

声  明

本资讯基于国内外最新循证医学研究,旨在饶益大众、学术传播,非医疗实践之唯一准则;本资讯内容不应用作医疗纠纷判定的依据;本资讯所涉及内容不承担任何依据本资讯制定及履行过程中所产生任何损失的赔偿责任。

此文为脊柱甘露语林®网络学术•疾病健康科普在线咨询助学公益平台原创作品,授权及投稿事宜敬请联系平台投稿邮箱(jzglyl@yeah.net)。

脊柱甘露语林
“脊柱甘露语林”学术前沿•疾病科普•助学公益平台,创建于2015年9月17日,以杏林春满为愿景,致力于探索人体脊柱(椎间盘)、青少年特发性脊柱侧弯等疾病的真谛;致力于普及人体低辐射拍片法,以期降低癌症风险,造福公众。
 最新文章