前沿背景
深度学习 (DL) 是材料数据科学中发展最快的主题之一,其应用迅速涌现,涵盖原子、基于图像、光谱和文本数据模态。DL 允许分析非结构化数据并自动识别特征。最近大型材料数据库的发展推动了 DL 方法在原子预测中的应用。相比之下,图像和光谱数据的进步在很大程度上利用了由高质量正演模型和生成式无监督 DL 方法实现的合成数据。在本文中,我们简要概述了深度学习方法,然后详细讨论了深度学习在原子模拟、材料成像、光谱分析和自然语言处理方面的最新发展。对于每种模态,我们讨论了涉及理论和实验数据的应用、典型的建模方法及其优势和局限性,以及相关的公开可用的软件和数据集。我们通过讨论该领域与不确定性量化相关的近期交叉工作来结束综述,并简要介绍了材料科学中 DL 方法的局限性、挑战和潜在增长领域。
在科学研究领域的新范式——“AI for Science”时代,基于数据驱动的机器学习力场(ML-FFs)成功解决了第一性原理电子结构方法与传统经验力场之间的准确性和效率的问题。近年来,该领域呈现出井喷式的蓬勃发展,这一趋势在Web of Science平台的检索结果中得以印证。相关工作频繁登入Nature、Science、Cell等顶尖刊物。
随着计算机的算力快速发展,通过ML-FFs实现第一性原理级别精度的大规模的分子模拟研究已经成为可能.机器学习方法还使人们对原本认为了解的系统有了新的化学认知,例如小分子的非对称电子效应等现象,使研究者们能够更好地理解实验结果。因此,ML-FFs将可能成为现代计算化学的基本组成部分。然而,作为新兴的跨学科领域,该领域知识面广,门槛高,涉及量子化学、分子模拟和机器学习等多个领域。
专题一:机器学习材料专题
专题二:深度学习材料专题
专题三:机器学习分子动力学专题
专题四:深度学习PINN物理信息神经网络
专题五:深度学习超材料逆向设计专题(五天内容详情点击名称查看)
专题六:机器学习锂离子电池专题(五天内容详情点击名称查看)
FLOWER CLUSTERS
学习目标
机器学习材料目标:
1.掌握Python编程基础及其在科学计算中的应用:学会利用Python进行数据处理、模型构建与可视化,熟悉NumPy、Pandas等工具。
2.理解材料与化学中的机器学习方法:掌握线性回归、逻辑回归、决策树、支持向量机等常见算法的基本原理与应用。
3.应用机器学习解决材料科学问题:通过项目实践,深入理解数据采集、特征选择、模型训练与评估等步骤,学会使用sklearn等工具库完成任务。
4.了解材料数据的特征工程与数据库应用:学习如何表示分子结构与晶体结构,并了解常见材料数据库的使用方法。
5.提升实战能力并引导深入学习:通过多样化的项目实践案例,巩固课程内容,为后续深度学习等更复杂算法的学习打下基础。
深度学习材料目标:
1.理解深度学习与材料科学的结合点:掌握深度学习在材料特征工程和化学中的应用,了解当前研究的前沿方向。
2.熟练使用材料数据库与工具库:学习材料基因组的基本方法,并熟练掌握Material Project、Pymatgen、ASE等常见数据库及工具库的使用。
3.掌握常见深度学习算法的原理与应用:深入理解卷积神经网络、时序神经网络、生成模型及图神经网络的工作原理及其在材料研究中的具体应用。
4.培养实战能力:通过动手实践,包括深度学习框架Pytorch和Pytorch Lightning的使用、卷积神经网络在材料图像识别中的应用、基于Transformer的属性预测模型构建、生成对抗网络和变分自编码器在材料生成中的应用等,提升解决材料研究实际问题的能力。
机器学习分子动力学目标:本次授课内容包括快速上手量化软件、入门和理解机器学习,熟练运用LAMMPS模拟软件,精通机器学习力场模型等,并附带大量相关代码与示例脚本。本次课不仅带来生态最完善的DeePMD系列软件的详解和使用,还将带来机器学习力场领域具有超高数据效率的等变模型(NequIP/MACE/Allegro),从而显著减轻高昂的数据生产成本。此外,还有机器学习力场领域的ChatGPT产品——开箱即用、免费开源的通用大模型(MACE-OFF23,MACE-MP0,DPA等)的使用与微调技巧。
讲师介绍
机器学习材料专题和深度学习材料专题主讲老师张老师来自国内“985工程”顶尖高校材料物理与化学专业,长期从事材料科学、机器学习,未来互联网与命名数据网络,量子力学等领域。在多个国际高水平期刊上发表 SCI检索论文15余篇。国家发明专利一项,他的授课方式深入浅出,能够将复杂的理论知识和计算方法讲解得清晰易懂,受到学员们的一致认可和高度评价!
机器学习分子动力学主讲老师来自国内高校陈老师授课,已发表SCI论文近20余篇,研究方向为基于机器学习的分子动力学模拟,包括 构建高效、高精度的AI分子力场模型,采用主动学习或大模型的知识蒸馏方法来获取高质量训练数据集, 开发基于C++的高性能的多GPU并行的LAMMPS的插件。熟知各种AI模型DeePMD, SchNet, DimeNet, SphereNet, DPA2和等变系列模型的Nequip, MACE, Allegro等,精通所有量子化学软件!
专题一:机器学习材料专题
材料机器学习概述与python基础
【理论内容】
1. 机器学习概述
2. 材料与化学中的常见机器学习方法
3. 应用前沿
【实操内容】
1)Python基础
1)开发环境搭建
2)变量和数据类型
3)控制流
2)Python基础(续)
1)函数
2)类和对象
3)模块
3. Python科学数据处理
1)NumPy
2)Pandas
3)绘图可视化
4)文件系统
第二天:常见机器学习方法与实践1
【理论内容】
1. 线性回归
1)线性回归的原理
2)线性回归的应用
2. 逻辑回归
1)逻辑回归的原理
2)逻辑回归的应用
3. K近邻(KNN)
1)K近邻的原理
2)K近邻的应用
4. 感知机(浅层神经网络)
1)感知机的原理
2)使用感知机进行回归
3)使用感知机进行分类
【实操内容】
1. 线性回归的实现与初步应用
2. 逻辑回归的实现与初步应用
3. K近邻的实现与初步应用
4. 感知机的实现与初步应用
【项目实操内容】
1. 机器学习对CO2催化活性的预测|机器学习入门简单案例 【文章】
1)机器学习材料与化学应用的典型步骤
a)数据采集和清洗
b)特征选择和模型选择
c)模型训练和测试
d)模型性能评估和优化
2)sklearn库介绍
a)sklearn库的基本用法
b)sklearn库的算法API
c)sklearn库的模型性能评估
第三天 常见机器学习方法与实践2
【理论内容】
1. 决策树
1)决策树的原理
2)决策树的应用
2. 集成学习
1)集成学习的原理
2)集成学习的方法和应用
3. 朴素贝叶斯
1)朴素贝叶斯的原理
2)朴素贝叶斯的应用
4. 支持向量机
1)支持向量机的原理
2)支持向量机的应用
【实操内容】
1. 决策树的实现和应用
2. 随机森林的实现和应用
3. 朴素贝叶斯的实现和应用
4. 支持向量机的实现和应用
【项目实操内容】
1. 利用集成学习预测双金属ORR催化剂活性【文章】
1)Sklearn中的集成学习算法
2)双金属ORR催化活性预测实战
a)数据集准备
b)特征筛选
c)模型训练
d)模型参数优化
2. 使用支持向量机预测高熵合金相态【文章】
1)支持向量机的可视化演示
a)绘制决策边界
b)查看不同核函数的区别
2)支持向量机预测高熵合金相态(分类)
a)数据集准备
b)数据预处理
c)特征工程
d)模型训练及预测
3)支持向量机预测生物炭材料废水处理性能(回归)
a)数据集准备
b)数据预处理
c)模型训练及预测
第四天 常见机器学习方法与实践3
【理论内容】
1. 无监督学习
1)什么是无监督学习
2)无监督学习算法-聚类
3)无监督学习算法-降维
2. 材料与化学数据的特征工程
1)分子结构表示
2)晶体结构表示
3. 数据库
1)材料数据库介绍
2)Pymatgen介绍
【实操内容】
1. 无监督学习算法的实现与应用
2. 分子结构的表示
3. 晶体结构的表示
4. 数据库实操
【项目实操内容】
1. 无监督学习在材料表征中应用【文章】
1)K-Means聚类算法
2)石墨烯样品数据集准备
3)二维电镜图像处理
4)聚类及统计
2. 利用机器学习预测高能材料分子性质【文章】
1)高能分子数据集准备
2)从SMILES生成分子坐标
3)从分子坐标计算库伦矩阵
4)测试不同分子指纹方法
5)比较不同特征化方法
6)模型性能评估
第五天 项目实践专题
【项目实操内容】
1.利用机器学习加速发现耐高温氧化的合金材料【文章】
1)合金材料数据集准备
2)数据预处理
3)特征构建和特征分析
4)多种模型训练
5)使用训练好的模型进行推理
2.决策树(可解释性机器学习)预测AB2合金的储氢性能【文章】
1)储氢合金材料数据集准备
2)决策树基本流程
3)动手建立一棵树
4)决策树剪枝
5)决策过程可视化和特征重要性分析
6)分类决策树和回归决策树的区别
3.分子渗透性分类预测
1)使用定量的1D分子描述符和不同的机器学习模型进行QSAR模型的训练和预测
2)使用定性的2D分子描述符和不同的机器学习模型进行QSAR模型的训练和预测
3)比较不同分子描述方法对QSAR模型性能的影响
4. 多层感知机预测单晶合金晶格错配度【文章】
1)PyTorch与Scikit-learn中多层感知机的区别
2)使用PyTorch构建多层感知机
3)训练PyTorch多层感知机模型预测单晶合金晶格错配度
4)PyTorch多层感知机模型参数优化
专题二:深度学习材料专题
第一天:深度学习与材料特征工程
【理论内容】
1.深度学习概述
2.材料特征工程
3. 材料与化学中的常见深度学习方法
4. 应用前沿
【实操内容】
1.Pytorch深度学习框架实操
1)认识Pytorch
2)Pytorch深度学习模型的建立范式
3)为预测任务建立Pytorch深度学习模型
2.Pytorch Lightning框架实操
1)使用Pytorch Lightning训练模型
2)设置最佳保存点和早停
第二天:材料基因组(工具库及数据库)
【理论内容】
1.材料基因组概述
2.材料基因组的基本方法
3.常见材料数据库介绍
【实操内容】
1.Material Project数据库与Pymatgen
1)Material Project数据库实操
2)Pymatgen库实操(matgenb)
2.ASE(Atomic Simulation Environment)实操
3.OQMD数据库数据获取与使用(qmpy_rester)
4.AFLOW数据库数据获取与使用(aflow)
5.材料特征工具Matminer实操
1)Matminer获取材料数据集
2)Matminer生成材料描述符
第三天 常见的深度学习算法、应用及实践1
【理论内容】
1. 卷积神经网络(CNN)
1)CNN的介绍
2)CNN的原理
3)ResNet的介绍及原理
【项目实操内容】
1.CNN入门案例、深度神经网络模型的预训练及微调
1)使用微调的预训练ResNet预测mnist数据集
2)从头开始训练ResNet预测mnist数据集
2.STEM图像生成
1)STEM图像数据读取与处理
2)使用ASE创建原子模型
3)模拟二硫化钼中硫原子的缺失
4)生成硫原子缺失的STEM仿真图像
3.卷积神经网络在合金电镜图片识别的应用【文章】
1)合金电镜数据集介绍及图像预处理
2)构建简单CNN模型进行分类
3)使用预训练模型VGG16进行分类
4)使用预训练模型DenseNet201进行分类
5)模型性能展示
4. 基于粉末X射线衍射图谱的晶体对称性识别CNN模型【文章】
1)XRD图像数据集准备
2)使用PyTorch处理数据集
3)PyTorch训练一维图像数据预测模型
4)PyTorch模型验证和测试
第四天 常见的深度学习算法、应用及实践2
【理论内容】
1. 时序神经网络
1)RNN的介绍及原理
2)LSTM的介绍及原理
3)GRU的介绍及原理
4)Transformer的介绍及原理
【项目实操内容】
1.LSTM&GRU入门案例
1)使用PyTorch实现时序预测模型
2)训练LSTM模型
3)训练GRU模型
4)模型评估
2.基于GRU/Transformer网络预测锂电池的老化轨迹【文章】
1)电池数据集准备与分析
2)原始数据分割与处理
3)训练GRU模型预测电池老化轨迹
4)训练Transformer模型预测电池老化轨迹
5)模型性能评估与预测
3. 基于Transformer对聚合物性质进行预测【文章】
1)聚合物数据集准备
2)对聚合物数据进行特征编码
3)使用预训练的Transformer
4)以K折交叉验证的方式微调Transformer模型预测聚合物性能
第五天 常见的深度学习算法、应用及实践3
【理论内容】
1.生成模型
1)生成对抗网络(GAN)的介绍及原理
2)变分自编码器(VAE)的介绍及原理
3)扩散模型(Diffusion Model)的介绍及原理
2.图神经网络
1)图神经网络(GNN)的介绍及原理
【项目实操内容】
1.基于VAE逆向生成晶体材料【文章】
1)晶体结构体素空间编码
2)使用变分自编码器进行晶体结构自动生成
3)变分自编码器的潜空间采样
2.基于Transformer架构的自回归模型生成指定空间群的晶体材料【文章】
1)基于Transformer架构的自回归模型
2)基于对称性的晶体结构表示
3)使用训练好的自回归模型进行指定空间群的晶体材料生成
3.图神经网络入门、分子图编码及预测
1)图神经网络实操
2)小分子的图表示
3)使用图神经网络对小分子进行分类预测
专题三:机器学习分子动力学专题
基于机器学习的分子动力学
第一部分(分子动力学基础)
1.理论内容
1.1科学研究的四范式:从大数据时代到AI4SCIENCE时代
1.2AI4SCIENCE时代的分子动力学模拟:从传统的经验力场方法和第一性原理方法到机器学习力场
1.3基于机器学习的分子动力学的特点,分类和工作流程,及发展趋势.
2.实操内容:
1.Linux系统与超算服务器的常规操作
2.Python(pycharm或vscode)的基本数据类型与代码调试
3.虚拟环境(Anaconda或Mamba)的使用
3.分子模拟软件介绍
3.1LAMMPS的入门与使用
3.2软件发展趋势与特点
3.3输入文件的详细解析与注意事项
3.4相关势函数的获取渠道
3.5分子模拟轨迹的后处理与分析
3.6机器学习势函数使用
4.OpenMM的入门与使用
4.1软件发展趋势与特点
4.2运行脚本与注意事项
4.3GAFF(Amber)力场的简要介绍
4.4使用sobtop软件和Python快速、自动化生成任意有机分子的力场参数文件(同时也适用GROMACS)
5.量子化学计算软件的介绍与快速上手
5.1CP2K软件的发展介绍与特点:
5.2软件发展趋势与特点
5.3运行命令与赝势文件
5.4使用MULTIWFN快速生成单点能或分子动力学模拟的输入文件
5.5输入文件的字段解释与注意事项
5.6使用Python实现自动化提交任务与任务后处理
5.7在CP2K中使用GFN1-xTB方法,适合新手的入门旋转!
6.ORCA软件的发展介绍与特点:
6.1软件发展趋势与特点
6.2使用MULTIWFN或基于模板快速生成单点能或分子动力学模拟的输入文件及注意事项
6.3使用Python实现自动化提交任务与任务后处理
6.4在ORCA中使用ωB97M-V泛函
7.XTB软件的发展介绍与特点:
7.1软件发展趋势与特点:发展迅猛!年被引用增长率高达87%;能够执行单点能,几何优化,分子模拟等功能
7.2安装与常用命令
7.3几种半经验方法的简要介绍
7.4使用Python实现自动化提交任务与任务后处理
7.5DFTB(简单介绍)
7.6执行单点能,几何优化,分子模拟等
7.7使用Python实现自动化提交任务与任务后处理
8.案例:传统力场方法与机器方法力场方法的对比
8.1使用OpenMM执行有机体系的分子模拟
8.2基于机器学习力场方法,结合LAMMPS执行合金,锂电池体系的分子模拟
8.3使用MDtraj等软件进行模拟结果的后处理分析与Python高质量科研绘图,包括:能量与力的预测曲线,径向分布函数,键长键角二面角分布,电池电压曲线等.
第二部分(机器学习力场的模型设计)
1.理论内容
1.1机器学习与深度学习的快速入门
1.1.1常见概念与分类
1.1.2机器学习的发展历史以及部分理论:通过可视化案例,理解神经网络的通用近似理论
1.1.3神经元,反向梯度下降,损失函数,过/欠拟合,残差连接等基本概念
1.1.4ANN, CNN, RNN, TRANSFORMER等深度神经网络的基本框架的介绍与特点
1.1.5相关学习资源的推荐
1.2科学领域的机器学习模型介绍
1.2.1物理约束/物理对称性
1.2.2高效描述局部环境方法的分类与特点
1.2.3基于核方法或深度神经网络方法
1.2.4基于描述符或分子图方法
1.3基于描述符的机器学习力场模型
1.3.1机器学习力场的开篇工作
1.3.2BPNN模型详解与发展
1.3.3生态最好的机器学习力场模型
1.3.4DeePMD系列工作的详解
1.3.5DeePMD的发展和几种描述符的介绍及特点
1.3.6DeePMD的压缩原理与特点
1.3.7DPGEN的工作原理
1.4基于图框架的机器学习力场模型
1.4.1图神经网络、图卷积网络和消息传递神经网络的发展与理解
1.4.2图神经网络的机器学习力场模型的经典模型
1.4.3SchNet模型的特点与代码实现
1.4.4基于三维空间建模的完备性与效率的几何系列模型:
1.4.5DimeNet,SphereNet和ComENet模型的详解与比较
1.4.6其他机器学习力场模型概述:DTNN和PhysNet等
2.实操内容
2.1DeePMD的离线安装与验证
2.2DeePMD输入文件详解:与理论课的模型框架相对应地进行超参数设定的讲解,及使用经验
2.3DeePMD的常见功能,包括训练,重启,冻结,压缩和测试
2.4DeePMD的常见问题与训练过程的分析
2.5综合使用LAMMPS和DeePMD, 执行高精度的分子动力学模拟
2.6分子模拟的数据后处理与分析
2.7DPGEN软件的介绍与工作流程
2.8DPGEN软件的输入和输出文件:param.json和machine.json文件的参数详解;跨计算分区的提交任务示例;不同量化级别方法的示例
2.9DPGEN软件的常用命令与使用经验,以及不同体系收敛的参考标准
第三部分(高级课程 —— 等变模型系列,领域热点)
1.理论内容
1.1不变系列模型的总结
1.1.1等变模型的概念,特点,分类和应用
1.1.2等变的概念
1.1.3等变模型的分类与特点
1.1.4等变模型的介绍:超高数据利用率与优秀的泛化能力
1.1.5群的简要介绍
1.1.6SO(3)群的简单入门与张量积
1.1.7欧式神经网络(E3NN)的介绍与注意事项
1.1.8高阶等变模型与传统模型,经验力场的区别
1.1.9常见误区的提醒
1.2等变机器学习力场的经典模型:
1.2.1Nat. Commun.上高被引的NequIP模型的详解和代码框架
2.实操内容
2.1DeePMD软件的进阶使用与补充讲解,包括多GPU并行训练
2.2LAMMPS以多GPU并行方式运行机器学习力场模型
2.3使用Python代码快速可视化机器学习力场模型在等变与不变设计上的区别
2.4使用多种机器学习的降维方法,结合K-Means聚类,从分子模拟轨迹中以低冗余方式提取多帧结构文件。
2.5NequIP模型的超参数介绍和使用
2.6复现Nat. Commun.文章结果,包括计算径向分布函数、键角分布等性质
2.7使用wandb进行超参数调优与训练过程中各种信息的可视化分析
第四部分
1.理论部分
1.1高效/高精度的基于ACE的等变模型
1.2ACE方法,消息传递和等变框架的集大成者:MACE模型
1.3方法的完备性,效率和系列发展
1.4MACE模型在多个领域的应用
1.5机器学习力场领域的ChatGPT模型
1.6有机分子体系的通用大模型:MACE-OFF23
1.7几乎涵盖元素周期表所有元素的材料领域的通用大模型:MACE-MP0
1.8其他大模型的简要介绍
1.9适用于大规模GPU并行框架的等变模型
1.10消息传递模型的不足
1.11NequIP团队在Nat. Commun.上的新作--Allegro模型的方法详解与比较
1.12SevenNet模型的介绍与比较
2.实操部分
2.1MACE模型和Allegro模型的超参数介绍和使用经验
2.2MACE模型与DeePMD模型的对比,包括精度,数据效率等
2.3Libtorch与LAMMPS软件的编译
2.4机器学习力场领域的ChatGPT的使用与分析
2.5快速上手MACE-OFF23和MACE-MP0模型
2.6对通用大模型进行微调与分析
2.7DPA-1和DPA-2的介绍与特点
课程部分案例图片:
专题四:深度学习PINN课程目录
第一天
课程目标:深入理解神经网络的基本概念、架构和在多个领域的应用。掌握搭建深度学习开发环境的技能,包括使用Conda创建Python虚拟环境和安装PyTorch等必要工具。学习设计和实现多层感知机(MLP)等深度神经网络架构。通过实际案例,培养将理论知识应用于解决复杂问题的能力。
Python与深度学习(上午)
神经网络作为一种强大的机器学习技术,在各个领域的广泛应用(图像识别、自然语言处理、金融科技、推荐系统、环境科学等)。神经网络的基本构建模块,包括神经元、层、激活函数等核心组成部分。指导学员搭建深度学习开发环境,包括使用Conda创建Python虚拟环境、PyTorch等必要的工具和库的安装。讲述利用Numpy从文件读取存储,到数据类型、矩阵变换和tensor的常用计算。
深度神经网络搭建(下午)
案例一:多层感机预测材料属性
在材料科学领域,准确预测材料的属性对于新材料的设计和发现具有重要意义。传统的预测方法依赖于复杂的理论模型或耗时的实验测试。随着机器学习技术的发展,我们可以使用多层感知机(MLP)来快速、准确地从材料的化学式中学习并预测其属性。
第二天
课程目标:深入理解物理信息神经网络(PINN)如何融合物理定律和数据驱动学习。学习如何利用PINN解决正问题和逆问题。通过实际案例,培养使用PINN进行建模和预测的技能。通过摩擦系数识别反演案例,掌握如何使用PINN从噪声数据中反求物理参数。学习如何使用PINN来解决导热扩散问题,包括如何将物理定律(如扩散方程)嵌入到神经网络中。
PINN——方法原理(上午)
案例二:摩擦系数识别反演
物理信息学习神经网络是一种强大的工具,它结合了深度学习技术和物理定律,使其不仅可以解决给定输入预测输出的问题,而且可以处理利用给定输出确定模型参数。本案例利用存在噪声的观测数据识别阻尼振动方程中的摩擦系数μ。
PINN——传热扩散(下午)
案例三:线性热传导问题
热传导是热力学和传热学中的一个核心概念,它涉及研究在稳态条件下热量如何在物体内部传递。在许多工程和物理问题中,理解和预测热传导过程对于确保材料的性能、优化热管理系统以及保障结构的完整性至关重要。对于具有恒定热导率的均质物体,热传导过程可以通过一维稳态传导方程来描述。
案例四:污染物向地下迁移扩散
地下水污染是一个全球性的环境问题,准确预测污染物的扩散和迁移过程对于制定有效的环境修复策略至关重要。物理信息神经网络在模拟污染物向地下迁移扩散的问题上具有显著的应用潜力。污染物在地下水中的迁移通常可以通过扩散方程来描述。
第三天
课程目标:深化对物理信息神经网络在流体力学和固体力学中应用的理解,并提高将这一先进技术应用于解决实际工程问题的能力。通过分析和实践Burgers方程、流体遇阻行为、振动梁响应以及能量损失方法等案例,掌握如何将这些模型应用于流体力学中的粘性流体动力学问题和流体遇阻行为的研究,以及固体力学中的振动梁动力学问题和基于能量损失的载荷响应分析。
PINN——流体力学(上午)
案例五:粘性流体动力学
Burgers方程是流体力学中的一个基本方程,它通过结合对流和扩散效应来描述一维流体在考虑流体粘性的情况下运动。案例描述了封闭流体环境中给予一个初始正弦波形式的位移扰动而激发的流体运动。
案例六:流体遇阻行为研究
流体绕过障碍物时的行为在工程和环境科学中非常重要,例如在设计建筑物、桥梁和飞机时预测和控制空气流动,以及在水处理和海洋工程中研究水流模式。通过结合物理定律和数据驱动的方法,PINNs能够提高预测的准确性和效率,为工程应用提供科学依据。
PINN——固体力学(下午)
案例七:振动梁动力学与结构特性参数反演
在固体力学领域,研究两端固定梁在初始时刻受到正弦波形纵向振动激励的响应,是一个经典的动力学问题。该问题还涉及到波动方程的求解,对理解固体材料的动态响应特性和优化结构设计均具有重要的意义。
案例八:基于能量损失的载荷响应
在工程领域,结构的响应分析对于预测和设计结构在实际载荷下的变形和应力分布至关重要。传统的PINN通常基于控制方程来预测结构响应,在处理复杂载荷问题需要长时间训练。通过能量衡算而不是直接求解控制方程的方法,可以更有效地处理非线性问题。
第四天
课程目标:熟练掌握PINN在处理耦合系统和复杂系统,如不规则几何体内的热流耦合和电池系统中的应用。通过深入学习,学员将能够将PINN技术应用于解决实际工程和科学问题,特别是在流体力学和热传递的耦合系统,以及电池健康状态预测等领域。理解流体流动与热传递之间的相互作用,以及这些相互作用如何影响系统性能。掌握如何使用PINN进行电池健康状态的预测,以及如何将电池理论融入PINN模型中。
PINN——耦合系统(上午)
案例九:顶盖驱动空腔
顶盖驱动空腔问题是计算流体力学中的一个经典问题,用于模拟一个被刚性顶盖以恒定速度驱动的方形或矩形空腔中的流体流动。这种配置常用于测试和验证数值方法的准确性,因为它产生了丰富的流体动力学行为,包括涡流、速度分布和压力场。
案例十:鳍片热流耦合
鳍片热流耦合在工业应用中非常常见,如在散热器、热交换器和电子冷却设备中。在这些系统中,流体的流动与鳍片的热传递之间存在复杂的相互作用。流体动力学影响热传递效率,而热传递过程也会影响流体的流动特性。因此,理解和预测这种耦合系统的动态行为对于优化设计至关重要。
PINN——锂电系统(下午)
案例十一:锂电健康状态预测
锂离子电池健康状态是指电池当前容量与其初始容量的比值,是衡量电池性能和寿命的关键指标。锂离子电池健康状态的准确预测对于电池管理系统、电动汽车和可再生能源存储等领域至关重要。物理信息神经网络可以有效地整合电化学理论和实验数据,从而对电池的健康状况进行准确预测。
第五天
课程目标:提升对PINN的优化技巧,并让学会使用DeepXDE工具包来解决实际问题。掌握并应用加权PINN和小批次训练法等优化技巧,以提高模型的预测准确性和收敛性。学习并实践使用DeepXDE工具包,以简化PINN模型的开发和训练过程。通过半导体器件和化学反应案例,了解如何将DeepXDE应用于实际的物理和化学问题。
PINN——优化技巧(上午)
案例十二:加权物理信息神经网络
通过在损失函数中添加权重,加权PINN能够更准确地捕捉模型的初始条件,从而在整个时间范围内提供更准确的预测。这种方法对于理解和预测材料的界面动力学以及相关的工程问题具有重要意义。
案例十三:小批次训练法
小批次训练法是一种在深度学习中用于提高性能的技术。与全批量梯度下降相比,小批量处理有助于更好地避免不太理想的局部最小值。研究发现,小批量方法可以促进用于近似相场方程的神经网络的收敛。
PINN——工具介绍(DeepXDE) (下午)
案例十四:半导体器件中的电势分布
在半导体物理中,了解电势如何在器件中变化对于设计和优化器件性能至关重要。泊松方程描述了电场(电势的负梯度)与自由电荷密度之间的关系,在电势变化是由电荷分布引起的物理情境下适用。本案例我们关注一个一维半导体纳米线,由于掺杂的影响,在内部产生了电势变化。
案例十五:扩散化学反应的参数辨识
在化学工业中,反应器是进行化学反应的核心设备。理解和控制反应器内的反应动力学对于提高反应效率、优化产品产量和质量至关重要。本案例考虑一个理想反应器,其中两种化学物质A和B发生反应,其反应过程可以用一个扩散-反应系统描述。
#
课程特色及授课方式
线上授课时间和地点自由,建立专业课程群进行实时答疑解惑,理论+实操授课方式结合大量实战案例与项目演练,聚焦人工智能技术在材料和化学领域的最新研究进展,课前发送全部学习资料,课程提供全程答疑解惑;
完全贴合学员需求的课程体系设计,定期更新的前沿案例,由浅入深式讲解,课后提供无限次回放视频,免费赠送二次学习,发送全部案例资料,永不解散的课程群,可以与相同领域内的老师同学互动交流问题,让求知的路上不再孤单!
增值服务:
1、凡参加人员将获得本次课程学习资料及所有案例模型文件;
2、课程结束可获得本次所学专题全部回放视频;
3、课程会定期更新前沿内容,参加本次课程的学员可免费参加一次本单位后期举办的相同专题课程(任意一期)
#
课程时间
机器学习材料时间:
2024.10.19----2024.10.20(上午9.00-11.30下午13.30-17.00)2024.10.23----2024.10.24(晚上19.00-22.00)
2024.10.26----2024.10.27(上午9:00-11:30下午13:30-17:00)
腾讯会议 线上授课(共五天课程 提供全程视频回放)
深度学习材料时间:
2024.11.2----2024.11.3(上午9.00-11.30下午13.30-17.00)
2024.11.6----2024.11.7(晚上19.00-22.00)
2024.11.9----2024.11.10(上午9:00-11:30下午13:30-17:00)
腾讯会议 线上授课(共五天课程 提供全程视频回放)
机器学习分子动力学时间:
2024.10.19----2024.10.20(上午9.00-11.30下午13.30-17.00)2024.10.26----2024.10.27(上午9:00-11:30下午13:30-17:00)
腾讯会议 线上授课(共五天课程 提供全程视频回放)
机器学习锂离子电池时间:
2024.09.14----2024.09.15(上午9.00-11.30下午13.30-17.00)
2024.09.18---2024.09.19(晚上19.00-22.00)
2024.09.21----2024.09.22(上午9.00-11.30下午13.30-17.00)
腾讯会议 线上授课(共五天课程 提供全程视频回放)
#
课程费用
课程费用:
机器学习分子动力学
报名费用:每人每班¥5280元 (包含会议费、资料费提供课后全程回放资料)
机器学习材料、深度学习材料、深度学习PINN
报名费用:每人每班¥4680元 (包含会议费、资料费提供课后全程回放资料)
重磅优惠:
早鸟价优惠:提前报名缴费学员可得300元优惠(仅限前15名)
套餐价:同时报名两个课程¥9080元
报二赠一(同时报名两个班可以免费赠送一个学习名额,赠送班任选)
年报优惠:可免费学习一年特惠:20880元(可免费学习一整年本单位举办的任意课程)
报名费用可开具正规报销发票及提供相关缴费证明、邀请函,可提前开具报销发票、文件用于报销
报名咨询方式(请扫描下方二维码)
RECRUIT
联系人|陈老师
咨询电话|15652523032(微信同号)