西南大学 2021 年的高等代数试题总体难度中等,难在题量较大、很多题都分了几问来书写,易在题目短小精悍、全是基础的证明和计算,考查范围全面,是一套十分务实的真题。该试题主要考查了以下知识点:
行列式的计算(将第一列的 -x 倍依次加到其他列,得到“箭头形”行列式)
正交替换化为标准型,Schmidt 正交化再单位化
有限维线性空间上的同构,单射满射
证明直和关系,先证和,再证直和(交为 0 )
分块矩阵
证明线性空间,证八条;合同关系的本质是秩和正负惯性指数相同;同一线性变换在不同基下的矩阵表示是相似的
可交换矩阵的经典问题
压轴题,证明多项式不可能有非零而重数大于 n-1 的根,反证法假设得到方程组的系数矩阵行列式非 0,从而得到矛盾
试题来源于 数学考研李扬,学习参考了樊启斌老师、陈现平老师书籍以及其他院校真题等资料,还有和老师同学的讨论,学习进步,非常感谢