医线心声 | 心血管疾病和癌症的共同风险因素

健康   健康   2024-12-26 17:57   北京  

点击蓝字

关注我们

医线心声微专辑

扫描二维码

可查看更多内容

泰达国际心血管病医院 郑 刚


心血管疾病(CVD)和癌症是全球死亡的主要原因[1-2]。从历史上看,这两个疾病被视为不同的实体,但这种观点正在发生变化[3-5]。在过去几年中,积累的证据表明,癌症患者患CVD的风险显著增加[6-10],同时,CVD导致癌症风险显著增加[11-12]。存在这种联系的几个潜在原因,包括共同的疾病机制、常见的风险因素和一系列癌症疗法的心脏毒性。因此,了解CVD和癌症之间的双向关系对于两者的诊断、预防和管理至关重要,对公共卫生具有重要影响[13]。需进一步了解这些疾病之间的共同风险因素,这促进了心脏病学的发展,这是一个多学科领域,专注于促进癌症患者的心血管健康。随着癌症治疗方法及其各种不良心血管影响的不断增加,对心脏病和癌症语言“双语”并理解串扰专家的需求也在增加[11-15]。本文评估了目前对CVD和癌症共同风险因素流行病学的认识,以及癌症患者CVD发病率的增加。



01


高血压


高血压是CVD发展的重要致病风险因素,众多前瞻性队列研究、随机临床试验(RCT)和荟萃分析证明了这一点[28]。由于癌症患者和幸存者的高血压患病率较高,癌症患者的这种风险因素的影响大于普通人群[29]。在对100万名没有CVD病史的成年人进行的61项前瞻性队列研究的荟萃分析中,发现40~69岁人群的常规收缩压(SBP)每增加20 mm Hg,卒中和缺血性心脏病(IHD)的死亡率增加2倍[30]。此外,降压已被明确证明可降低心血管风险和死亡率。例如,对344 716名参与者进行的48项药物降压治疗随机对照试验的荟萃分析表明,收缩压每降低5 mm Hg可显著降低重大不良心血管事件风险,无论是在没有既往CVD的参与者中(调整后的HR=0.91),还是在既往CVD患者中(调整前的HR=0.89)[31]。血压降低也与全因死亡率的降低有关[相对风险(RR)=0.87] [32]。我们对高血压与癌症风险之间关系的理解正在演变,对86项前瞻性研究进行了荟萃分析,以调查高血压与不同类型癌症风险之间的关联[33]。在包括年龄和至少三个癌症风险因素的多变量调整研究中,观察到高血压与肾细胞癌症(RR=1.52)、结肠癌癌症(RR=1.30)和乳腺癌癌症(RR=1.10)之间存在显著关联。

此外,观察到肾细胞癌症的剂量-反应关系,收缩压和舒张压每增加10 mm Hg,风险分别增加5%和7%[33]。在一项对86 000多名参与者进行的前瞻性队列研究中,高血压与癌症发病率(调整后HR=1.06)和死亡率(调整后HR=1.01)的风险适度增加相关[34]。包括29项研究中11 643名参与者的荟萃分析结果相似,其中绝经后高血压妇女患癌症的风险增加(RR=1.20),但绝经前妇女不增加[35]。因此,高血压是CVD和各种类型癌症的重要风险因素。


02


高脂血症  


高脂血症与动脉粥样硬化性心血管疾病(ASCVD)之间的关联早已确立[36-37]。一项对61项前瞻性观察性研究的荟萃分析显示,将总胆固醇水平降低1 mmol/L与整个主要胆固醇范围内缺血性心脏病(IHD)死亡率的显著降低有关,没有明显阈值[38]。在所有调查的年龄组中,包括40~49岁(调整后的HR=0.44)、50~69岁(调整前的HR=0.66)和70~89岁(调整过的HR=0.83),均观察到了这种关联。对34项RCT(包括270 288名参与者)的荟萃分析表明,在低密度脂蛋白胆固醇(LDL-C)水平≥100 mg/dl的患者中,更强化的降脂治疗(他汀类、依折麦布和前蛋白转化酶枯草杆菌蛋白酶/9型[PCSK9]抑制剂)与心血管死亡率和全因死亡率的更大降低有关,在基线LDL-C水平较高时效果更大[39]。例如,当比较更强化(强效药理学干预)和不太强化(低效、安慰剂或对照组)的治疗时,基线LDL-C水平≥60 mg/dl的心血管和全因死亡率的比率分别为0.65和0.72[39]

也有证据表明,高脂血症与结直肠癌和乳腺癌风险增加之间存在联系。在对17项研究包括近200万例患者(中位随访12年)进行的元分析中,作者调查了高脂血症与结直肠癌癌症发病风险之间的关系,发现甘油三酯水平升高(RR= 1.18)和总胆固醇水平升高(RR=1.11)的个体的风险适度但显著增加[40]。这项荟萃分析中包括的许多(但不是全部)研究均调整了体重指数(BMI)和生活方式因素等潜在混杂因素,但只有少数研究调整了降脂药物的使用,这增加了残留混杂的可能性[40]。一项针对英国生物银行384 862名参与者的研究表明,甘油三酯水平与结直肠癌癌症风险适度相关(高甘油三酯组与低甘油三酯组的调整HR 1.19)[41]。这一发现与英国生物银行既往研究一致。然而,高密度脂蛋白胆固醇(HDL-C)水平与结直肠癌癌症风险呈负相关(HDL-C与LDL-C组的调整HR=0.83)[41]。在这项研究中,研究人员考虑了降胆固醇药物的使用,克服了既往研究的一个关键局限性[40,42-43]。LDL-C水平升高与结直肠癌风险之间的正相关性仅在非服用胆固醇药物的患者中观察到[41]。然而,关于血脂水平和自我报告的药物使用情况的数据仅在基线时可用,研究人员没有调整BMI、腰臀比或身体活动[41],这可能导致残留的混杂因素。

在癌症方面,一项对26项前瞻性研究(包括160多万女性)进行的大型荟萃分析发现,HDL-C水平与癌症风险之间存在适度的负相关(RR=0.85),但未观察到其他脂质标记的相关性[44]。在另一项对15项前瞻性队列研究(包括110多万妇女)的荟萃分析中,也证明了HDL-C水平与乳腺癌症风险之间的反比关系,尽管这种关系仅在绝经后才显著女性(RR=0.77)[45]。然而,HDL-C水平与癌症风险之间的相反关系在研究中通常不一致,部分原因可能是混淆因素、有限的随访时间,甚至是相反的因果关系,因为增殖的肿瘤细胞会耗尽循环中的HDL水平[46-47]。此外,在提高HDL-C水平的调脂疗法的随机对照试验中,与癌症相关结果的关联是混合的[48]。因此,HDL-C水平与癌症风险之间的关系仍不确定。


03


肥胖


肥胖是CVD的既定风险因素,但也会恶化其他心血管风险因素,包括糖尿病、高血压和高脂血症[49-50]。一项包括501项队列研究和3000万参与者的总体综述显示,BMI每增加5 kg/m2(作为连续测量),高血压(RR=1.49)和各种CVD亚型的风险增加,包括心力衰竭(HF)(RR=1.41)、缺血性卒中(RR=1.36)、房颤(RR=1.23)和冠状动脉疾病(CAD)(调整后的HR=1.15),以及CVD死亡率(调整后HR=1.49)[51]。同一项研究包括对12项孟德尔随机化研究的荟萃分析,该研究支持肥胖与除中风外的所有上述CVD结果之间存在显著因果关系[51]

肥胖也是各种癌症的重要风险因素。一项对95项荟萃分析的综合综述显示,各种肥胖标志物(包括BMI、腰围比和体重增加)与11种不同的恶性肿瘤(包括激素相关癌症、多发性骨髓瘤、癌症和各种胃肠系统癌症)之间存在显著关联[52]。BMI每增加5 kg/m2,患癌症的风险增加9%(RR=1.09)至56%(RR=1.56)。这些发现反映了英国一项基于人群的研究的结果,该研究涉及524万参与者,显示BMI与17种常见的特定部位癌症之间存在正相关[53]。除增加癌症风险外,在某些癌症患者群体中,肥胖与更糟糕的结果有关。对包括630万参与者在内的203项研究的荟萃分析发现,肥胖(定义为BMI≥30 kg/m2)与乳腺癌、结直肠癌、前列腺癌和胰腺癌的癌症特异性死亡率增加(HR=1.17)以及乳腺癌、结直肠癌、前列腺癌及胃食管癌患者的复发率增加(HR=1.13)相关[54]


04


糖尿病


糖尿病是CVD的公认风险因素,CVD是糖尿病患者发病率和死亡率的最常见原因。在对57项研究的系统综述中,包括450多万2型糖尿病(T2DM)成年人,50.3%的死亡归因于CVD[55-56]。在一项针对963 648例T2DM患者的大型回顾性队列研究中(中位随访8年),在调整人口统计学因素、心血管风险因素和既往CVD后[57],T2DM与心血管死亡率(调整后的HR=1.18)和全因死亡率(调整前的HR=1.16)的风险显著增加有关。对129项前瞻性队列研究和随机对照试验的事后分析(包括1000多万人)进行的荟萃分析表明,在普通人群中,糖尿病前期(由HBA1c水平定义)、糖耐量受损或空腹血糖水平异常与复合CVD(RR=1.15)、CAD(RR=1.16)、卒中(RR=1.14)和全因死亡率(RR=1.13)的风险增加有关[58]。在对已确诊患有CVD的参与者的分析中,除卒中外,糖尿病前期与上述结果之间的关联仍显著。

糖尿病也与各种癌症的风险增加有关,一项评估18项荟萃分析(包括355项队列研究和119项病例对照研究)的系统综述显示,糖尿病与乳腺癌症发病率(RR=1.20)、癌症(RR=1.27)、肝内胆管癌(RR=1.97)和癌症(RR=1.99)之间存在正相关性,而与其他癌症的相关性被认为是不确定,因为研究或偏差之间存在显著异质性[59]。研究人员强调,30%的研究仅根据年龄和性别进行了调整,这可能导致残余混淆[59]。另一项对151项纵向队列研究的荟萃分析涉及3200多万参与者,揭示了糖尿病与多种恶性肿瘤发病率之间的关系,包括胆囊癌症(RR=1.61)、子宫内膜癌(RR=1.63)、胰腺癌(RR=2.09)和肝癌(RR=2.23),以及所有癌症死亡率增加(RR=1.25)[60]。然而,糖尿病与其他癌症之间的关联,包括癌症在内的癌症由于未测量的混淆而不确定[60]


05


吸烟


吸烟是CVD和癌症最重要的共同风险因素之一。在一项针对188 157名参与者的大型前瞻性研究中,目前吸烟与任何CVD风险增加(RR=1.63)和CVD死亡率增加(HR=2.75)有关[61]。这些结果在一项对89项糖尿病患者前瞻性队列研究的大型荟萃分析中得到了证实[62]。另一项荟萃分析141项队列研究表明,与从不吸烟的人相比,每天吸烟一支的人患CAD(男性RR=1.48)和卒中(男性RR=1.25)的风险高于预期[63]。在女性中,每天吸烟一支也会增加患CAD(RR =1.57)和卒中(RR=1.31)风险[63]。对8770名重度吸烟者(≥20包年)的回顾性分析表明,与目前吸烟者相比,5年内戒烟与CVD发病风险较低有关(HR= 0.61)[64]。就癌症风险而言,一项对216项观察研究进行的系统荟萃分析显示,目前吸烟者患肺癌(RR=8.96)、喉癌(RR=6.98)和咽癌(RR=6.76)的风险最高[65]。在过去10年中进行的荟萃分析证实,吸烟与乳腺癌症(包括乳腺癌死亡率)[66-67]、结肠癌(剂量依赖性效应)[68]和肺癌症(男性和女性的风险相似)[69]的风险之间存在显著关联。此外,对29项已发表的孟德尔随机化研究和123项再孟德尔随机化分析的荟萃分析表明,吸烟遗传易感性增加的患者患大多数类型的CVD和多部位特异性癌症的风险增加[70]


06


饮酒


总体而言,饮酒与CVD风险之间的关系数据不一致,而酒精是某些类型癌症的既定风险因素。对45项前瞻性研究的荟萃分析表明,与不饮酒者相比,低量饮酒者(每天1.30~24.99 g酒精)的冠心病死亡率降低,尽管在仅限于高质量研究或控制基线心血管健康的分析中没有观察到这种关联[71]。一项针对英国生物库37万多名参与者的孟德尔随机化研究发现,轻度饮酒(每周饮酒量>0~8.4杯)的心血管风险略有增加,但重度饮酒的风险呈指数级增加(每周饮酒>15.4~24.5杯;高血压的OR=2.6,冠心病的OR=5.7)[72]。此外,调整混杂的生活方式因素会减弱轻度饮酒对心脏的保护作用[72]。另一项孟德尔随机化研究显示,基因预测的饮酒量与卒中(OR=1.27)和外周动脉疾病(OR=3.05)之间存在关联[73]。一项对83项前瞻性研究的分析,包括19个国家的近60万名当前饮酒者,表明饮酒量增加与多种CVD亚型之间存在正相关[74]。总体而言,轻度饮酒与CVD风险之间的关联尚不明确,但重度饮酒显然与CVD有关。

饮酒是癌症的一个既定风险因素。在一项对572项研究中486 538例癌症患者的荟萃分析中,饮酒与口咽癌、食道癌、结直肠癌、喉癌和乳腺癌风险的剂量依赖性增加有关[75],大量饮酒(每天>60 g)可增加患各种其他类型癌症的风险[76-77]。一项针对450多万投保成年人的大规模基于人口的队列研究显示,癌症发病率随着饮酒量的增加而呈剂量依赖性增加,从轻度(每天<15.0g;调整后的HR=1.03)至中度(每天15.0~29.9 g;调整后的HR=1.10)和重度(每天≥30 g;调整后的HR=1.34)饮酒量;相反,减少饮酒可以降低患癌症的风险[75]。因此,中度至重度饮酒增加癌症风险,轻度饮酒的数据相互矛盾[75,78-79]


07


饮食


证据强烈支持健康饮食在降低CVD和癌症风险方面的作用[80]。在西班牙进行的一项多中心随机对照试验中,7447名CVD高风险参与者被分配到地中海饮食,补充橄榄油或混合坚果,或低脂饮食(对照组)[81]。主要心血管不良反应与对照饮食相比,地中海饮食的事件发生率较低(橄榄油的HR=0.69;混合坚果的HR=0.72)[81]。一项对40项随机对照试验的大型网络荟萃分析比较了各种饮食计划和最小干预措施,结果显示,地中海饮食可以降低非致命性心肌梗死(MI)(OR=0.48)、CVD死亡率(OR=0.55)和全因死亡率(OR=0.72)的风险[82]。其他大型荟萃分析证实了地中海饮食与降低CVD风险之间的正相关关系[83-84]。地中海饮食中最具心脏保护作用的成分是橄榄油(RR=0.83)、水果(RR= 0.88)、蔬菜(RR=0.87)和豆类(RR=0.91)[85]

在对28项荟萃分析的系统综述中,水果、蔬菜、坚果或种子、全谷物、鱼类或海鲜以及巧克力降低了CVD风险(保护性关联的RR范围为每天每份变化0.87~0.96)[86-87]。相反,食用加工肉类、红肉和含糖饮料增加患CVD的风险(有害关联的RR范围为每天每份变化1.06~1.15)[86-87]。几项研究植物性饮食的荟萃分析也表明,CVD和心血管死亡的风险降低了[88-91]。也有强有力的证据支持健康饮食与降低癌症风险之间的联系。在一项对83项随机对照试验、队列研究和病例对照研究的荟萃分析中,涉及200多万参与者,对地中海饮食的最高依从性与各种癌症的风险降低相关,包括结直肠癌(RR=0.82)、乳腺癌(RR=0.92)和其他特定部位癌症(胃癌、肝癌、头颈部),以及癌症死亡率降低(RR=0.86)[92]。综合分析表明,保护作用主要归因于水果、蔬菜和全谷物的摄入量增加[93]。同样,另一项对超过300万参与者的117项研究进行的荟萃分析显示,坚持地中海饮食的最高程度与各种类型癌症的风险降低有关,包括结直肠癌(RR =0.83)、乳腺癌(RR=0.94)和其他几种特定部位癌症,以及癌症死亡率的降低(RR=0.87)[93]。此外,一项使用英国生物银行超过100 000名参与者数据的前瞻性队列研究表明,更坚持健康的植物性饮食与癌症(HR=0.93)和CVD(HR=0.92)风险降低相关[91]


08


体力活动


体力活动增加与CVD和癌症风险降低显著相关。一项对33项观察性队列研究(包括80 000多名参与者)的荟萃分析显示,与高心肺健康相比,低心肺健康与全因死亡率(RR=1.70)和CVD事件(RR=1.56)的增加有关[94]。几项大型荟萃分析表明,与低水平或没有体育活动相比,休闲时间和职业体育活动的增加与CVD风险的降低之间存在剂量依赖性的正相关[95-96]。这一发现得到了另一项对33项前瞻性队列研究的荟萃分析的证实,该研究表明,身体活动的增加(从不活动到推荐水平:每周150分钟中等强度有氧运动)与CVD发病率(RR=0.83)和CVD死亡率(RR=0.77)的显著降低有关。然而,在那些体力活动水平高的人中,心血管死亡率似乎更低,没有明确的阈值衡量寿命[98]。较高的每日总坐着时间也与CVD风险增加有关(HR=1.29)[99]

对9项前瞻性队列研究(包括33 000多例已知CAD患者)的全面回顾表明,与那些保持不活动的人相比,活动(HR=0.49)或从不活动转变为活动(HR=0.63)的心血管死亡率显著降低,其他数据强调了随着时间的推移增加或保持身体活动的重要性[100]。同时,增加体力活动与降低癌症风险相关。一项对144万参与者参与的12项前瞻性观察性研究进行的荟萃分析发现,与自我报告体力活动水平较低的人相比,在调整BMI后,高水平的自我报告业余体力活动与10种不同癌症的风险降低适度相关,与食道(HR=0.62)、肺部(HR=0.73)和肾脏癌症(HR= 0.84)的相关性最强[101]。多项荟萃分析显示,体力活动水平最高的个体(与体力活动水平最低的个体相比)患多种癌症类型的风险降低,癌症特异性死亡率降低(HR=0.82)[102-103]


09


健康的社会决定因素(SDOH)


包括经济稳定、教育、医疗保健的可及性和质量、邻里和建筑环境以及社会和社区背景等因素[104]。SDOH越来越被认为是许多疾病的关键风险因素,包括CVD和癌症[105]。例如,SDOH被纳入2019年美国心脏协会(AHA)/美国心脏病学会关于CVD一级预防的指南[106],并已被证明有助于改善CVD临床风险预测工具的区分,如AHA PREVENT(预测CVD事件的风险)方程[107]

REGARDS研究是一项大型、前瞻性、纵向队列研究,由2003年至2007年间在美国招募的年龄≥45岁的非裔美国人和白人参与者组成,研究了卒中的风险因素。REGARDS研究也有助于深入了解SDOH与CVD和癌症结果之间的关系[108]。在REGARDS队列中,与没有不良SDOH的患者相比,至少有一个SDOH显著增加了因HF住院后90天的死亡率(调整后的HR=2.78)[109]。更大的SDOH负担与致命性CAD事件风险的分级增加有关,与没有不良SDOH的人相比[110],三个或更多SDOH与1.5倍的风险增加有关。同样,在年龄<75岁的人群中,SDOH数量的增加与卒中发病风险的增加独立相关,与没有不良SDOH的人群相比[111],有三个或更多SDOH会导致卒中风险增加(调整后的HR=1.51)。

在REGARDS队列中,SDOH与癌症结果之间的相关性也很显著,SDOH和癌症死亡率的分级增加相关。例如,患有三种或三种以上SDOH会导致<65岁人群(调整后的HR=1.31)和≥65岁人群中癌症死亡率增加(调整后HR=1.26)[112]。针对癌症和CVD共病患者,美国疾病控制与预防中心研究数据库(2015~2019)的回顾性横断面研究表明,生活在社会脆弱性指数较高县的个人(SVI)是SDOH的综合指标,其年龄调整死亡率更高[113]。该研究表明,通过比较单独癌症(HR=1.09)、单独CVD(HR=1.29)和合并癌症和CVD(HR=1.34)的最小和最有利SVI四分位数计算,县级、年龄调整死亡率的比率增加[113]。因此,在观察性研究中,即使在对混杂因素进行调整后,SDOH也与CVD和癌症的较差结果显著相关。

小结

有强有力的证据支持CVD和癌症具有共同的风险因素,并且密切相关,这对心脏生态学的未来有几方面影响:首先,这些数据强调了积极和及时地改变CVD、癌症或两者兼而有之的患者风险因素的重要性。旨在减肥、戒烟和体育活动的干预措施降低CVD和癌症风险,并可能具有协同预防效益。


专家简介


郑刚 教授



现任泰达国际心血管病医院特聘专家,济兴医院副院长


中国高血压联盟理事,中国心力衰竭学会委员,中国老年医学会高血压分会天津工作组副组长,中国医疗保健国际交流促进会高血压分会委员


天津医学会心血管病专业委员会委员,天津医学会老年病专业委员会常委,天津市医师协会高血压专业委员会常委,天津市医师协会老年病专业委员会委员,天津市医师协会心力衰竭专业委员,天津市医师协会心血管内科医师分会双心专业委员会委员,天津市心脏学会理事,天津市心律学会第一届委员会委员,天津市房颤中心联盟常委,天津市医药学专家协会第一届心血管专业委员会委员,天津市药理学会临床心血管药理专业委员会常委,天津市中西医结合学会心血管疾病专业委员会常委


《中华临床医师杂志(电子版)》特邀审稿专家,《中华诊断学电子杂志》《心血管外科杂志(电子版)》审稿专家,《华夏医学》副主编,《中国心血管杂志》常务编委,《中国心血管病研究》杂志第四届编委,《中华老年心脑血管病杂志》《世界临床药物》《医学综述》《中国医药导报》《中国现代医生》编委


本人在专业期刊和心血管网发表文章979篇,其中第一作者790篇,参加著书11部。获天津市2005年度“五一劳动奖章和奖状”和“天津市卫生行业第二届人民满意的好医生”称号


参考文献

(上下滑动可查看)
1. The Global Health Observatory. Global health estimates 2020: deaths by cause, age, sex, by country and by region. 2000-2019 (WHO, 2020).

2.Bray, F. et al. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 127, 3029–3030 (2021).

3. Meijers, R. A. & de Boer, R. A. Common risk factors for heart failure and cancer. Cardiovasc. Res. 115, 844–853 (2019).

4.de Boer, R. A. et al. Cancer and heart disease: associations and relations. Eur. J. Heart Fail. 21, 1515–1525 (2019).

5. Koene, R. J. et al. Shared risk factors in cardiovascular disease and cancer. Circulation 133, 1104–1114 (2016).

6.Stoltzfus, K. C. et al. Fatal heart disease among cancer patients. Nat. Commun. 11, 2020 (2011).

7. Battisti, N. M. L. et al. Prevalence of cardiovascular disease in patients with potentially curable malignancies: a national registry dataset analysis. JACC CardioOncol. 4, 238–253 (2022).

8. Florido, R. et al. Cardiovascular disease risk among cancer survivors: the Atherosclerosis Risk in Communities (ARIC) study. J. Am. Coll. Cardiol. 80, 22–32 (2022).

9. Paterson, D. I. et al. Incident cardiovascular disease among adults with cancer. JACC CardioOncol. 4, 85–94 (2022).

10. Zhang, X. et al. Ten-year cardiovascular risk among cancer survivors: the National Health and Nutrition Examination Survey. PLoS ONE 16, e0247919 (2021).

11. Aboumsallem, J. P., Moslehi, J. & de Boer, R. A. Reverse cardio-oncology: cancer development in patients with cardiovascular disease. J. Am. Heart Assoc. 9, e013754 (2020).

12. Bell, C. F. et al. Risk of cancer after diagnosis of cardiovascular disease. JACC CardioOncol. 5, 431–440 (2023).

13. Chianca, M. et al. Bidirectional relationship between cancer and heart failure: insights on circulating biomarkers. Front. Cardiovasc. Med. 9, 936654 (2022).

14. Hayek, S. S. et al. Preparing the cardiovascular workforce to care for oncology patients: JACC review topic of the week. J. Am. Coll. Cardiol. 73, 2226–2235 (2019).

15. Herrmann, J. Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat. Rev. Cardiol. 17, 474–502 (2020).

16. Herrmann, J. Vascular toxic effects of cancer therapies. Nat. Rev. Cardiol. 17, 503–522 (2020).

17. Omland, T., Heck, S. L. & Gulati, G. The role of cardioprotection in cancer therapy cardiotoxicity. JACC CardioOncol. 4, 19–37 (2022).

18. Tan, S. et al. Immune checkpoint inhibitor therapy in oncology. JACC CardioOncol. 4, 579–597 (2022).

19. Quartermaine, C. et al. Cardiovascular toxicities of BTK inhibitors in chronic lymphocytic leukemia. JACC CardioOncol. 5, 570–590 (2023).

20. Glen, C. et al. Mechanistic and clinical overview cardiovascular toxicity of BRAF and MEK inhibitors: JACC: CardioOncology state-of-the-art review. JACC CardioOncol. 4, 1–18 (2022).

21. Parashar, S. et al. Cancer treatment-related cardiovascular toxicity in gynecologic malignancies. JACC CardioOncol. 5, 159–173 (2023).

22. Welty, N. E. & Gill, S. I. Cancer immunotherapy beyond checkpoint blockade. JACC CardioOncol. 4, 563–578 (2022).

23. Georgiopoulos, G. et al. Cardiovascular toxicity of proteasome inhibitors: underlying mechanisms and management strategies: JACC: CardioOncology state-of-the-art review. JACC CardioOncol. 5, 1–21 (2023).

24. Bergom, C. et al. Past, present, and future of radiation-induced cardiotoxicity: refinements in targeting, surveillance, and risk stratification. JACC CardioOncol. 3, 343–359 (2021).

25. de Boer, R. A. et al. Common mechanistic pathways in cancer and heart failure. A scientific roadmap on behalf of the Translational Research Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. J. Heart Fail. 22, 2272–2289 (2020).

26. Karlstaedt, A., Moslehi, J. & de Boer, R. A. Cardio-onco-metabolism: metabolic remodelling in cardiovascular disease and cancer. Nat. Rev. Cardiol. 19, 414–425 (2022).

27. Leiva, O. et al. Common pathophysiology in cancer, atrial fibrillation, atherosclerosis, and thrombosis: JACC: CardioOncology state-of-the-art review. JACC CardioOncol. 3, 619–634 (2021).

28. Fuchs, F. D. & Whelton, P. K. High blood pressure and cardiovascular disease. Hypertension 75, 285–292 (2020).

29. Cohen, J. B. et al. Hypertension in cancer patients and survivors. JACC CardioOncol. 1, 238–251 (2019).

30. Lewington, S. et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360, 1903–1913 (2002).

31. Rahimi, K. et al. Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: an individual participant-level data meta-analysis. Lancet 397, 1625–1636 (2021).

32. Ettehad, D. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387, 957–967 (2016).

33. Seretis, A. et al. Association between blood pressure and risk of cancer development: a systematic review and meta-analysis of observational studies. Sci. Rep. 9, 8565 (2019).

34. Harding, J. L. et al. Hypertension, antihypertensive treatment and cancer incidence and mortality: a pooled collaborative analysis of 12 Australian and New Zealand cohorts. J. Hypertens. 34, 149–155 (2016).

35. Han, H. et al. Hypertension and breast cancer risk: a systematic review and meta-analysis. Sci. Rep. 7, 44877 (2017).

36. Nelson, R. H. Hyperlipidemia as a risk factor for cardiovascular disease. Prim. Care 40, 195–211 (2013).

37. Borén, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).

38. Lewington, S. et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 370, 1829–1839 (2007).

39. Navarese, E. P. et al. Association between baseline LDL-C level and total and cardiovascular mortality after LDL-C lowering: a systematic review and meta-analysis. JAMA 319, 1566–1579 (2018).

40. Yao, X. & Tian, Z. Dyslipidemia and colorectal cancer risk: a meta-analysis of prospective studies. Cancer Causes Control26, 257–268 (2015).

41. Yuan, F. et al. Serum lipid profiles and cholesterol-lowering medication use in relation to subsequent risk of colorectal cancer in the UK Biobank cohort. Cancer Epidemiol. Biomark. Prev. 32, 524–530 (2023).

42. Fang, Z., He, M. & Song, M. Serum lipid profiles and risk of colorectal cancer: a prospective cohort study in the UK Biobank. Br. J. Cancer 124, 663–670 (2021).

43. Tian, Y. et al. The association between serum lipids and colorectal neoplasm: a systemic review and meta-analysis. Public Health Nutr. 18, 3355–3370 (2015).

44. Nouri, M. et al. Effect of serum lipid profile on the risk of breast cancer: systematic review and meta-analysis of 1,628,871 women. J. Clin. Med. 11, 4503 (2022).

45. Ni, H., Liu, H. & Gao, R. Serum lipids and breast cancer risk: a meta-analysis of prospective cohort studies. PLoS ONE 10, e0142669 (2015).

46. Nowak, C. & Ärnlöv, J. A Mendelian randomization study of the effects of blood lipids on breast cancer risk. Nat. Commun. 9, 3957 (2018).

47. Ganjali, S. et al. HDL and cancer – causality still needs to be confirmed Update 2020. Semin. Cancer Biol. 73, 169–177 (2021).

48. Pirro, M. et al. High density lipoprotein cholesterol and cancer: marker or causative Prog. Lipid Res. 71, 54–69 (2018).

49. Powell-Wiley, T. M. et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 143, e984–e1010 (2021).

50. Csige, I. et al. The impact of obesity on the cardiovascular system. J. Diabetes Res. 2018, 3407306 (2018).

51. Kim, M. S. et al. Association between adiposity and cardiovascular outcomes: an umbrella review and meta-analysis of observational and Mendelian randomization studies. Eur. Heart J. 42, 3388–3403 (2021).

52. Kyrgiou, M. et al. Adiposity and cancer at major anatomical sites: umbrella review of the literature. BMJ 356, j477 (2017). 53. Bhaskaran, K. et al. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults. Lancet 384, 755–765 (2014).

54. Petrelli, F. et al. Association of obesity with survival outcomes in patients with cancer: a systematic review and meta-analysis. JAMA Netw. Open4, e213520 (2021).

55. Leon, B. M. & Maddox, T. M. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 6, 1246–1258 (2015).

56. Einarson, T. R. et al. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol. 17, 83 (2018).

57. Raghavan, S. et al. Diabetes mellitus-related all‐cause and cardiovascular mortality in a national cohort of adults. J. Am. Heart Assoc. 8, e011295 (2019).

58. Cai, X. et al. Association between prediabetes and risk of all cause mortality and cardiovascular disease: updated meta-analysis. BMJ 370, m2297 (2020).

59. Tsilidis, K. K. et al. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ 350, g7607 (2015).

60. Ling, S. et al. Association of type 2 diabetes with cancer: a meta-analysis with bias analysis for unmeasured confounding in 151 cohorts comprising 32 million people. Diabetes Care 43, 2313–2322 (2020).

61. Banks, E. et al. Tobacco smoking and risk of 36 cardiovascular disease subtypes: fatal and non-fatal outcomes in a large prospective Australian study. BMC Med. 17, 128 (2019).

62. Pan, A. et al. Relation of smoking with total mortality and cardiovascular events among patients with diabetes mellitus. Circulation 132, 1795–1804 (2015).

63. Hackshaw, A. et al. Low cigarette consumption and risk of coronary heart disease and stroke: meta-analysis of 141 cohort studies in 55 study reports. BMJ 360, j5855 (2018).

64. Duncan, M. S. et al. Association of smoking cessation with subsequent risk of cardiovascular disease. JAMA 322, 642–650 (2019).

65. Gandini, S. et al. Tobacco smoking and cancer: a meta-analysis. Int. J. Cancer 122, 155–164 (2008).

66. Macacu, A. et al. Active and passive smoking and risk of breast cancer: a meta-analysis. Breast Cancer Res. Treat. 154, 213–224 (2015).

67. Duan, W. et al. Smoking and survival of breast cancer patients: a meta-analysis of cohort studies. Breast 33, 117–124 (2017).

68. Botteri, E. et al. Smoking and colorectal cancer risk, overall and by molecular subtypes: a meta-analysis. Am. J. Gastroenterol. 115, 1940–1949 (2020).

69. O’Keeffe, L. M. et al. Smoking as a risk factor for lung cancer in women and men: a systematic review and meta-analysis. BMJ Open8, e021611 (2018).

70. Larsson, S. C. & Burgess, S. Appraising the causal role of smoking in multiple diseases: a systematic review and meta-analysis of Mendelian randomization studies. EBioMedicine 82, 104154 (2022).

71. Zhao, J. et al. Alcohol consumption and mortality from coronary heart disease: an updated meta-analysis of cohort studies. J. Stud. Alcohol Drugs 78, 375–386 (2017).

72. Biddinger, K. J. et al. Association of habitual alcohol intake with risk of cardiovascular disease. JAMA Netw. Open5, e223849 (2022).

73. Larsson, S. C. et al. Alcohol consumption and cardiovascular disease. Circ. Genom. Precis. Med. 13, e002814 (2020).

74. Wood, A. M. et al. Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 391, 1513–1523 (2018).

75. Yoo, J. E. et al. Association between changes in alcohol consumption and cancer risk. JAMA Netw. Open5, e2228544 (2022).

76. Bagnardi, V. et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose–response meta-analysis. Br. J. Cancer 112, 580–593 (2015).

77. Rumgay, H. et al. Global burden of cancer in 2020 attributable to alcohol consumption: a population-based study. Lancet Oncol. 22, 1071–1080 (2021).

78. Bagnardi, V. et al. Light alcohol drinking and cancer: a meta-analysis. Ann. Oncol. 24, 301–308 (2013).

79. Jin, M. et al. Alcohol drinking and all cancer mortality: a meta-analysis. Ann. Oncol. 24, 807–816 (2013).

80. Martínez-González, M. A., Gea, A. & Ruiz-Canela, M. The Mediterranean diet and cardiovascular health. Circ. Res. 124, 779–798 (2019).

81. Estruch, R. et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 378, e34 (2018).

82. Karam, G. et al. Comparison of seven popular structured dietary programmes and risk of mortality and major cardiovascular events in patients at increased cardiovascular risk: systematic review and network meta-analysis. BMJ 380, e072003 (2023).

83. Pant, A. et al. Primary prevention of cardiovascular disease in women with a Mediterranean diet: systematic review and meta-analysis. Heart 109, 1208–1215 (2023).

84. Rodríguez-Monforte, M., Flores-Mateo, G. & Sánchez, E. Dietary patterns and CVD: a systematic review and meta-analysis of observational studies. Br. J. Nutr. 114, 1341–1359 (2015).

85. Grosso, G. et al. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: are individual components equal Crit. Rev. Food Sci. Nutr. 57, 3218–3232 (2017).

86. Miller, V. et al. Evaluation of the quality of evidence of the association of foods and nutrients with cardiovascular disease and diabetes: a systematic review. JAMA Netw. Open5, e2146705 (2022).

87. Bechthold, A. et al. Food groups and risk of coronary heart disease, stroke and heart failure: a systematic review and dose-response meta-analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 59, 1071–1090 (2019).

88. Gan, Z. H. et al. Association between plant-based dietary patterns and risk of cardiovascular disease: a systematic review and meta-analysis of prospective cohort studies. Nutrients 13, 3952 (2021).

89. Quek, J. et al. The association of plant-based diet with cardiovascular disease and mortality: a meta-analysis and systematic review of prospect cohort studies. Front. Cardiovasc. Med. 8, 756810 (2021).

90. Kim, H. et al. Plant‐based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all‐cause mortality in a general population of middle‐aged adults. J. Am. Heart Assoc. 8, e012865 (2019).

91. Thompson, A. S. et al. Association of healthful plant-based diet adherence with risk of mortality and major chronic diseases among adults in the UK. JAMA Netw. Open6, e234714 (2023).

92. Schwingshackl, L. et al. Adherence to Mediterranean diet and risk of cancer: an updated systematic review and meta-analysis. Nutrients 9, 1063 (2017).

93. Morze, J. et al. An updated systematic review and meta-analysis on adherence to Mediterranean diet and risk of cancer. Eur. J. Nutr. 60, 1561–1586 (2021).

94. Kodama, S. et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA 301, 2024–2035 (2009).

95. Sattelmair, J. et al. Dose response between physical activity and risk of coronary heart disease. Circulation 124, 789–795 (2011).

96. Li, J. & Siegrist, J. Physical activity and risk of cardiovascular disease – a meta-analysis of prospective cohort studies. Int. J. Env. Res. Public Health 9, 391–407 (2012).

97. Wahid, A. et al. Quantifying the association between physical activity and cardiovascular disease and diabetes: a systematic review and meta‐analysis. J. Am. Heart Assoc. 5, e002495 (2016).

98. Blond, K. et al. Association of high amounts of physical activity with mortality risk: a systematic review and meta-analysis. Br. J. Sports Med. 54, 1195–1201 (2020).

99. Bailey, D. P. et al. Sitting time and risk of cardiovascular disease and diabetes: a systematic review and meta-analysis. Am. J. Prev. Med. 57, 408–416 (2019).

100. Gonzalez-Jaramillo, N. et al. Systematic review of physical activity trajectories and mortality in patients with coronary artery disease. J. Am. Coll. Cardiol. 79, 1690–1700 (2022).

101. Moore, S. C. et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern. Med. 176, 816–825 (2016).

102. McTiernan, A. et al. Physical activity in cancer prevention and survival: a systematic review. Med. Sci. Sports Exerc. 51, 1252–1261 (2019).

103. Friedenreich, C. M. et al. Physical activity and mortality in cancer survivors: a systematic review and meta-analysis. JNCI Cancer Spectr. 4, pkz080 (2019).

104. Brandt, E. J. et al. Assessing and addressing social determinants of cardiovascular health: JACC state-of-the-art review. J. Am. Coll. Cardiol. 81, 1368–1385 (2023).

105. Powell-Wiley, T. M. et al. Social determinants of cardiovascular disease. Circ. Res. 130, 782–799 (2022).

106. Arnett, D. K. et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 140, e596–e646 (2019).

107. Khan, S. S. et al. Development and validation of the American Heart Association’s PREVENT equations. Circulation 149, 430–449 (2024).

108. Howard, V. J. et al. The Reasons for Geographic and Racial Differences in Stroke study: objectives and design. Neuroepidemiology 25, 135–143 (2005).

109. Sterling, M. R. et al. Social determinants of health and 90‐day mortality after hospitalization for heart failure in the REGARDS study. J. Am. Heart Assoc. 9, e014836 (2020).

110. Safford, M. M. et al. Number of social determinants of health and fatal and nonfatal incident coronary heart disease in the REGARDS study. Circulation 143, 244–253 (2021).

111. Reshetnyak, E. et al. Impact of multiple social determinants of health on incident stroke. Stroke 51, 2445–2453 (2020). 112. Pinheiro, L. C. et al. Social determinants of health and cancer mortality in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort study. Cancer 128, 122–130 (2022).

113. Ganatra, S. et al. Impact of social vulnerability on comorbid cancer and cardiovascular disease mortality in the United States. JACC CardioOncol. 4, 326–337 (2022).



声明:本文仅供医疗卫生专业人士了解最新医药资讯参考使用,不代表本平台观点。该信息不能以任何方式取代专业的医疗指导,也不应被视为诊疗建议,如果该信息被用于资讯以外的目的,本站及作者不承担相关责任。

(来源:《国际循环》编辑部)



凡原创文章版权属《国际循环》所有。欢迎个人转发分享。其他任何媒体、网站如需转载或引用本网版权所有之内容须在醒目位置处注明“转自《国际循环》”


国际循环
《国际循环》于2004年创刊,由著名心血管专家胡大一教授担任总编辑,以“同步传真国际循环进展”为办刊宗旨,以循证医学理念为指导思想,采用全媒体组合报道模式,致力于为国内广大心脑血管临床、教研人员搭建一座与国际接轨的桥梁。
 最新文章