【谁能说这不是一篇表扬稿】确定脑内神经连接、搞清楚脑内有哪些细胞,对于脑研究(神经科学)很有帮助。属于同一个问题的不同侧面。
最近,《自然》发表了9篇有关果蝇脑内神经连接的文章。
不久前,《细胞》和《科学》发表了两篇猴脑的单细胞测序结果。
为什么国外用果蝇而国内用猴?
是外国穷、中国富?
还是国外的科学家愚蠢,只能鼠目寸光(或“蝇目寸光”),而国内的科学家胸怀远大、器宇轩昂?
还是有其他可能性?
为什么国外的文章都是科学家为主,而很不清楚有没有企业参与?而国内出产的两篇文章第一作者及第一作者单位都是企业?
是国外不知道以科研促企业?还是国外认为科研课题应该科学家为主,而国内才有企业长期依赖国家科研经费?
我们看看二十年前的基因组测序,国外也是先做简单生物:病毒、细菌、酵母、线虫、果蝇、小鼠、猴、人。因为简单生物提供技术开发、磨练,科研团队建设和训练,一旦有足够训练和经验,再做人类基因组测序。
进行单细胞测序,当然也应该如此:先从简单动物,在复杂动物。
进行连接组,国外就是按正常逻辑,以前做过线虫(只有几百个神经元),现在做果蝇(十几万神经元),而不是急于做猴的连接组。
当可以完全(或大部分)做完一个物种(如果蝇),那么,如果有基本规律,可能就可以发现。正如一百年前摩尔根通过研究果蝇发现大多数遗传规律,而无需用猴研究遗传规律。今天,研究果蝇就可以做完其连接组(或单细胞测序)。
而猴脑神经元数量很多,即对百万神经元测序,也只是杯水车薪,即使有不同于果蝇的规律,找到的可能性也比较小。用猴做连接组,现在也是同样问题:样本太小(单细胞基因测序是细胞数量太少、连接组是神经元数量太少)。
人脑是860亿神经元,就是测一亿,占的比例也太小。猴脑一般估计在5亿左右,做百万就是五百分之一,也不够掌握规律。
先做低等动物以积累经验和改进技术,经验积累也提供时间,因为各种技术都在改进中、价格也就会随着时间而降低,特别是测序的价格,“与时俱降”的规律为众所周知。
主持国外项目的科学家,是有经验的人。而主持中国猴基因测序的科研工作者,此前既没有做过猴、也没有做过任何基因工作,但振振有词“因为没有做过,所以特别合适”。不会是说,“领导”就只需要拿到国家经费和提供样本,依赖企业做工作?
我们国家特别有钱?特别能够让科学界与某些企业互通有无?这边厢得几篇文章、那边厢得国家科研经费?
当然,人家企业不忘既得了钱、还得了第一作者,好像还可能会生产哥本哈根大学的博士论文,让不出国的企业人员以后又可以作为国外留学人才“引进回国”?
外国的科学家,怎么就不知道怎么让他们的国家做冤大头?
只能说:
有些中国人都进化成猴了,外国科学家仍然愚昧如果蝇。
Publications Utilizing FlyWire
Neuronal wiring diagram of an adult brain. Dorkenwald et. al. Nature 2024
Whole-brain annotation and multi-connectome cell typing quantifies circuit stereotypy in Drosophila. Schlegel et. al. Nature 2024
Neuronal "parts list" and wiring diagram for a visual system. Matsliah, Yu et. al Nature 2024
Brain rewiring during developmental transitions: A Comparative Analysis of Larva and Adult Drosophila melanogaster. Yadav et. al. bioRxiv 2024
Divergent neural circuits for proprioceptive and exteroceptive sensing of the Drosophila leg. Lee et. al. bioRxiv 2024
Morphology and synapse topography optimize linear encoding of synapse numbers in Drosophila looming responsive descending neurons.. Moreno-Sanchez et. al. bioRxiv 2024
Ectopic Reconstitution of a Spine-Apparatus Like Structure Provides Insight into Mechanisms Underlying Its Formation. Falahati et. al. bioRxiv 2024
Interneuron diversity and normalization specificity in a visual system. Seung bioRxiv 2024
Social state gates vision using three circuit mechanisms in Drosophila. Schretter et. al. bioRxiv 2024
Light and dopamine impact two circadian neurons to promote morning wakefulness. Le et. al. bioRxiv 2024
Neural pathways and computations that achieve stable contrast processing tuned to natural scenes. Gür et. al. bioRxiv 2024
Neurons underlying aggressive actions that are shared by both males and females in Drosophila. Tao et. al. bioRxiv 2024
Molecular and Cellular Mechanisms of Teneurin Signaling in Synaptic Partner Matching. Xu et. al. bioRxiv 2024
Organization of an ascending circuit that conveys flight motor state in Drosophila. Cheong et. akl. Current Biology 2024
Taste cells expressing Ionotropic Receptor 94e reciprocally impact feeding and egg laying in Drosophila. Guillemin et. al. bioRxiv 2024
Anti-diuretic hormone ITP signals via a guanylate cyclase receptor to modulate systemic homeostasis in Drosophila. Gera et. al. bioRxiv 2024
Network Statistics of the Whole-Brain Connectome of Drosophila. Lin et. al. Nature 2024
Synaptic connectome of the Drosophila circadian clock. Reinhard et. al. bioRxiv 2023
Presynaptic inhibition selectively suppresses leg proprioception in behaving Drosophila. Dallmann bioRxiv 2023
Aminergic and peptidergic modulation of Insulin-Producing Cells in Drosophila. Held bioRxiv 2023
Descending control and regulation of spontaneous flight turns in Drosophila. Ros et. al. Current Biology 2023
Neural circuit mechanisms underlying context-specific halting in Drosophila. Sapkal et. al. Nature 2024
Heterogeneity of synaptic connectivity in the fly visual system. Cornean et. al. Nature Communications 2023
Overlap and divergence of neural circuits mediating distinct behavioral responses to sugar. Jacobs et. al. bioRxiv 2023
Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body. Ganguly et. al. Nature Communications 2024
A comprehensive neuroanatomical survey of the Drosophila Lobula Plate Tangential Neurons with predictions for their optic flow sensitivity. Zhao et. al. bioRxiv 2023
Fine-grained descending control of steering in walking Drosophila. Yang et. al. bioRxiv 2023
The fly connectome reveals a path to the effectome. Pospisil et. al. Nature 2024
Insights into vision from interpretation of a neuronal wiring diagram. Seung bioRxiv 2023
Connectomic reconstruction predicts the functional organization of visual inputs to the navigation center of the Drosophila brain. Garner et. al. bioRxiv 2023
Synaptic and peptidergic connectomes of the Drosophila circadian clock. Reinhard et. al. bioRxiv 2023
Neuronal correlates of time integration into memories. Frantzmann et. al. bioRxiv 2023
Networks of descending neurons transform command-like signals into population-based behavioral control. Braun et. al. bioRxiv 2023
A Drosophila computational brain model reveals sensorimotor processing. Shiu et. al. Nature 2024
Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion. González-Segarra et. al. eLife 2023
Disynaptic inhibition shapes tuning of OFF-motion detectors in Drosophila. Braun et. al. Current Biology 2023
Hue selectivity from recurrent circuitry in Drosophila. Christenson et. al. Nature Neuroscience 2024
Neurotransmitter Classification from Electron Microscopy Images at Synaptic Sites in Drosophila Melanogaster. Eckstein et. al. Cell 2023 (2024)
Visual Feedback Neurons Fine-Tune Drosophila Male Courtship via GABA-Mediated Inhibition. Mabuchi et. al. Current Biology 2023
Somatotopic organization among parallel sensory pathways that promote a grooming sequence in Drosophila. Eichler et. al. eLife 2023
Neural network organization for courtship-song feature detection in Drosophila. Baker et. al. Current Biology 2023
Eye structure shapes neuron function in Drosophila motion vision. Zhao et. al. bioRxiv 2022
Structured sampling of olfactory input by the fly mushroom body. Zheng et. al. Current Biology 2022
Taste quality and hunger interactions in a feeding sensorimotor circuit. Shiu et. al. eLife 2022
Mating-driven variability in olfactory local interneuron wiring. Chou et. al. Science Advances 2022
Olfactory stimuli and moonwalker SEZ neurons can drive backward locomotion in Drosophila. Israel Current Biology 2022
Chemoreceptor co-expression in Drosophila melanogaster olfactory neurons. Task et. al. eLife 2022
Synaptic targets of photoreceptors specialized to detect color and skylight polarization in Drosophila. Kind et. al. eLife 2021
Classification and genetic targeting of cell types in the primary taste and premotor center of the adult Drosophila brain. Sterne et. al. eLife 2021
Information flow, cell types and stereotypy in a full olfactory connectome. Schlegel et. al. eLife 2021
The neural basis for a persistent internal state in Drosophila females. Deutsch et. al. eLife 2020 (2022)