【探索】饶毅《饶议科学》:为什么中外科研课题如此不同?

2024-10-11 11:31   上海  

【谁能说这不是一篇表扬稿】确定脑内神经连接、搞清楚脑内有哪些细胞,对于脑研究(神经科学)很有帮助。属于同一个问题的不同侧面。

最近,《自然》发表了9篇有关果蝇脑内神经连接的文章。

不久前,《细胞》和《科学》发表了两篇猴脑的单细胞测序结果。

为什么国外用果蝇而国内用猴?

是外国穷、中国富?

还是国外的科学家愚蠢,只能鼠目寸光(或“蝇目寸光”),而国内的科学家胸怀远大、器宇轩昂?

还是有其他可能性?

为什么国外的文章都是科学家为主,而很不清楚有没有企业参与?而国内出产的两篇文章第一作者及第一作者单位都是企业?

是国外不知道以科研促企业?还是国外认为科研课题应该科学家为主,而国内才有企业长期依赖国家科研经费?

我们看看二十年前的基因组测序,国外也是先做简单生物:病毒、细菌、酵母、线虫、果蝇、小鼠、猴、人。因为简单生物提供技术开发、磨练,科研团队建设和训练,一旦有足够训练和经验,再做人类基因组测序。

进行单细胞测序,当然也应该如此:先从简单动物,在复杂动物。

进行连接组,国外就是按正常逻辑,以前做过线虫(只有几百个神经元),现在做果蝇(十几万神经元),而不是急于做猴的连接组。

当可以完全(或大部分)做完一个物种(如果蝇),那么,如果有基本规律,可能就可以发现。正如一百年前摩尔根通过研究果蝇发现大多数遗传规律,而无需用猴研究遗传规律。今天,研究果蝇就可以做完其连接组(或单细胞测序)。

而猴脑神经元数量很多,即对百万神经元测序,也只是杯水车薪,即使有不同于果蝇的规律,找到的可能性也比较小。用猴做连接组,现在也是同样问题:样本太小(单细胞基因测序是细胞数量太少、连接组是神经元数量太少)。

人脑是860亿神经元,就是测一亿,占的比例也太小。猴脑一般估计在5亿左右,做百万就是五百分之一,也不够掌握规律。

先做低等动物以积累经验和改进技术,经验积累也提供时间,因为各种技术都在改进中、价格也就会随着时间而降低,特别是测序的价格,“与时俱降”的规律为众所周知。

主持国外项目的科学家,是有经验的人。而主持中国猴基因测序的科研工作者,此前既没有做过猴、也没有做过任何基因工作,但振振有词“因为没有做过,所以特别合适”。不会是说,“领导”就只需要拿到国家经费和提供样本,依赖企业做工作?

我们国家特别有钱?特别能够让科学界与某些企业互通有无?这边厢得几篇文章、那边厢得国家科研经费?

当然,人家企业不忘既得了钱、还得了第一作者,好像还可能会生产哥本哈根大学的博士论文,让不出国的企业人员以后又可以作为国外留学人才“引进回国”?

外国的科学家,怎么就不知道怎么让他们的国家做冤大头?

只能说:

有些中国人都进化成猴了,外国科学家仍然愚昧如果蝇。



Publications Utilizing FlyWire 

  • Neuronal wiring diagram of an adult brain. Dorkenwald et. al. Nature 2024

  • Whole-brain annotation and multi-connectome cell typing quantifies circuit stereotypy in Drosophila. Schlegel et. al. Nature 2024

  • Neuronal "parts list" and wiring diagram for a visual system. Matsliah, Yu et. al Nature 2024

  • Brain rewiring during developmental transitions: A Comparative Analysis of Larva and Adult Drosophila melanogaster. Yadav et. al. bioRxiv 2024

  • Divergent neural circuits for proprioceptive and exteroceptive sensing of the Drosophila leg. Lee et. al. bioRxiv 2024

  • Morphology and synapse topography optimize linear encoding of synapse numbers in Drosophila looming responsive descending neurons.. Moreno-Sanchez et. al. bioRxiv 2024

  • Ectopic Reconstitution of a Spine-Apparatus Like Structure Provides Insight into Mechanisms Underlying Its Formation. Falahati et. al. bioRxiv 2024

  • Interneuron diversity and normalization specificity in a visual system. Seung bioRxiv 2024

  • Social state gates vision using three circuit mechanisms in Drosophila. Schretter et. al. bioRxiv 2024

  • Light and dopamine impact two circadian neurons to promote morning wakefulness. Le et. al. bioRxiv 2024

  • Neural pathways and computations that achieve stable contrast processing tuned to natural scenes. Gür et. al. bioRxiv 2024

  • Neurons underlying aggressive actions that are shared by both males and females in Drosophila. Tao et. al. bioRxiv 2024

  • Molecular and Cellular Mechanisms of Teneurin Signaling in Synaptic Partner Matching. Xu et. al. bioRxiv 2024

  • Organization of an ascending circuit that conveys flight motor state in Drosophila. Cheong et. akl. Current Biology 2024

  • Taste cells expressing Ionotropic Receptor 94e reciprocally impact feeding and egg laying in Drosophila. Guillemin et. al. bioRxiv 2024

  • Anti-diuretic hormone ITP signals via a guanylate cyclase receptor to modulate systemic homeostasis in Drosophila. Gera et. al. bioRxiv 2024

  • Network Statistics of the Whole-Brain Connectome of Drosophila. Lin et. al. Nature 2024

  • Synaptic connectome of the Drosophila circadian clock. Reinhard et. al. bioRxiv 2023

  • Presynaptic inhibition selectively suppresses leg proprioception in behaving Drosophila. Dallmann bioRxiv 2023

  • Aminergic and peptidergic modulation of Insulin-Producing Cells in Drosophila. Held bioRxiv 2023

  • Descending control and regulation of spontaneous flight turns in Drosophila. Ros et. al. Current Biology 2023

  • Neural circuit mechanisms underlying context-specific halting in Drosophila. Sapkal et. al. Nature 2024

  • Heterogeneity of synaptic connectivity in the fly visual system. Cornean et. al. Nature Communications 2023

  • Overlap and divergence of neural circuits mediating distinct behavioral responses to sugar. Jacobs et. al. bioRxiv 2023

  • Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body. Ganguly et. al. Nature Communications 2024

  • A comprehensive neuroanatomical survey of the Drosophila Lobula Plate Tangential Neurons with predictions for their optic flow sensitivity. Zhao et. al. bioRxiv 2023

  • Fine-grained descending control of steering in walking Drosophila. Yang et. al. bioRxiv 2023

  • The fly connectome reveals a path to the effectome. Pospisil et. al. Nature 2024

  • Insights into vision from interpretation of a neuronal wiring diagram. Seung bioRxiv 2023

  • Connectomic reconstruction predicts the functional organization of visual inputs to the navigation center of the Drosophila brain. Garner et. al. bioRxiv 2023

  • Synaptic and peptidergic connectomes of the Drosophila circadian clock. Reinhard et. al. bioRxiv 2023

  • Neuronal correlates of time integration into memories. Frantzmann et. al. bioRxiv 2023

  • Networks of descending neurons transform command-like signals into population-based behavioral control. Braun et. al. bioRxiv 2023

  • A Drosophila computational brain model reveals sensorimotor processing. Shiu et. al. Nature 2024

  • Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion. González-Segarra et. al. eLife 2023

  • Disynaptic inhibition shapes tuning of OFF-motion detectors in Drosophila. Braun et. al. Current Biology 2023

  • Hue selectivity from recurrent circuitry in Drosophila. Christenson et. al. Nature Neuroscience 2024

  • Neurotransmitter Classification from Electron Microscopy Images at Synaptic Sites in Drosophila Melanogaster. Eckstein et. al. Cell 2023 (2024)

  • Visual Feedback Neurons Fine-Tune Drosophila Male Courtship via GABA-Mediated Inhibition. Mabuchi et. al. Current Biology 2023

  • Somatotopic organization among parallel sensory pathways that promote a grooming sequence in Drosophila. Eichler et. al. eLife 2023

  • Neural network organization for courtship-song feature detection in Drosophila. Baker et. al. Current Biology 2023

  • Eye structure shapes neuron function in Drosophila motion vision. Zhao et. al. bioRxiv 2022

  • Structured sampling of olfactory input by the fly mushroom body. Zheng et. al. Current Biology 2022

  • Taste quality and hunger interactions in a feeding sensorimotor circuit. Shiu et. al. eLife 2022

  • Mating-driven variability in olfactory local interneuron wiring. Chou et. al. Science Advances 2022

  • Olfactory stimuli and moonwalker SEZ neurons can drive backward locomotion in Drosophila. Israel Current Biology 2022

  • Chemoreceptor co-expression in Drosophila melanogaster olfactory neurons. Task et. al. eLife 2022

  • Synaptic targets of photoreceptors specialized to detect color and skylight polarization in Drosophila. Kind et. al. eLife 2021

  • Classification and genetic targeting of cell types in the primary taste and premotor center of the adult Drosophila brain. Sterne et. al. eLife 2021

  • Information flow, cell types and stereotypy in a full olfactory connectome. Schlegel et. al. eLife 2021

  • The neural basis for a persistent internal state in Drosophila females. Deutsch et. al. eLife 2020 (2022)





















上海肝脏杂志社
及时发布肝脏疾病领域的新进展、新的研究成果及新技术,加强与读者交流
 最新文章