第一作者:Wenjiao Wang
通讯作者:Xuepeng Wang,Fuquan Bai,Wei Zhou
通讯单位:齐鲁工业大学,吉林大学
摘要
构造异构化共价有机框架(COFs)是通过在亚胺键周围交换单体而构建的,其独特的光电性质对光催化性能有重要影响。然而,对异构化与H2O2光合作用增强之间的内在关系的深入研究有限。本文合成了一对由亚胺键连接的异构体COFs (PB-PT-COF和PT-PB-COF),并证明了异构体COFs在H2O2生成过程中表现出不同的速率决定步骤,从而使光催化效率提高了两倍。PT-PB-COF对分子氧(O2 + e−→•O2-+ e-→H2O2)具有有效的吸附和活化作用,显著提高了H2O2光催化效率。相比之下,PB-PT-COF与H2O表现出强大的相互作用,可以直接氧化H2O(H2O + H+→H2O2)。该研究深入了解了光催化H2O2生成中结构异构化COFs的内在机制,为进一步优化构建单元提供了见解。
研究背景
过氧化氢(H2O2)被广泛认为是一种温和环保的绿色化学品,使其成为各种工业应用的多功能化合物。目前,蒽醌法在工业上产生的H2O2中占95%以上。然而,这种方法涉及能源密集型过程,包括多次氢化和氧化反应,这不是高效合成H2O2的理想方法。因此,迫切需要探索低能耗和环保的H2O2生产替代方案。光催化合成已成为一个突出的研究领域,为化学生产提供了绿色和可持续的方法。利用水(H2O)作为源材料,半导体光催化剂已被证明是合成H2O2的理想材料。自2020年以来,在多种光催化剂中,共价有机框架(COFs)因其广泛的光谱响应范围、明确的孔结构、可调节的结构单元和卓越的化学稳定性,其对H2O2的光合效率引起了人们的广泛关注。COFs光催化合成H2O2的研究主要集中在设计新的结构,阐明潜在的机制,以及开发高效的反应体系。其中,O2或H2O的吸附和活化对提高H2O2生成效率起着关键作用。进一步的探索仍然需要阐明催化剂之间相互作用和分子O2或H2O活化的分子水平机制。
本文亮点
1. 通过在亚胺键周围交换单体构建了两种构造异构的COFs。
2. 揭示了异构体COFs对光催化H2O2生成速率的影响。
图文解析
Figure 1. a) Synthetic routes for PB-PT-COF and PT-PB-COF, b,c) SEM and AC-TEM images of PB-PT-COF, d,e) SEM and AC-STEM images of PT-PB-COF, f) PXRD patterns, g) FTIR spectra and h) Solid-state 13C NMR spectra of PB-PT-COF and PT-PB-COF.
Figure 2. a) UV-Vis DRS and b) schematic illustrations of the band structures for PB-PT-COF and PT-PB-COF. c) Photocatalytic activity of PB-PT-COF and PT-PB-COF for H2O2 generation. Conditions: water (20 mL), catalyst (5 mg). 2D mapping TA spectra d,g), TA spectra signals on the fs-ns timescales e,h) and decay kinetic curves f,i) of PB-PT-COF and PT-PB-COF.
Figure 3. Photocatalytic performance of COFs: Comparison of photocatalytic H2O2 production using PB-PT-COF (a) and PT-PB-COF (b) under the different conditions. Conditions: light intensity (83 mW cm-2), Control, BA (10%), KBrO3 (10 mM) and TBA (10%). c) Comparison of H2O2 production for PB-PT-COF and PT-PB-COF under the different concentrations of p-BQ. d) H2O2 production of COFs under different conditions (N2, Air and O2). The H2O-TPD (e) and O2-TPD (f) curves of PB-PT-COF and PT-PB-COF.
Figure 4. a) The EPR spectra of PB-PT-COF and PT-PB-COF (Condition: Xenon lamp irradiation for 0 min (dark) and 5 min). b) The Koutecky-Levich plots obtained via RDE measurements in phosphate buffer (pH = 7) solution with continuous O2 purging. c) LSV curves of PB-PT-COF and PT-PB-COF without illumination. d) 18O2 isotope experiment for PB-PT-COF and PT-PB-COF. In situ DRIFT spectra of PB-PT-COF (e) and PT-PB-COF (f). g) The proposed differences in the mechanism for photocatalytic H2O2 generation of PB-PT-COF and PT-PB-COF.
Figure 5. a) Calculated electronic band structures and corrected bandgap of PB-PT-COF. The dashed red horizontal line is the reduction potential of O2/H2O2 respective to the vacuum level of PB-PT-COF. b) Calculated electronic band structures and corrected bandgap of PT-PB-COF. The dashed red horizontal line is the reduction potential of O2/H2O2 respective to the vacuum level of PT-PB-COF. c) ΔG for ORR of PB-PT-COF and PT-PB-COF d) Different reaction intermediate of *OO, *OOH and *HOOH on PB-PT-COF and PT-PB-COF, respectively. e) ΔG at different H2O adsorption sites and f) Electron localization function (ELF) and Bader charge analysis and g) Charge density differences (isovalue, 0.004 e Å-3) for oxygen adsorption of PB-PT-COF and PT-PB-COF. The yellow and blue iso-surface indicates electron accumulation and depletion, respectively.
结论
有机光催化前沿
综上所述,我们合成了新型同分异构体PB-PT-COF和PT-PB-COF,它们具有相同的构建单元,但以亚胺键为中心的取向相反。PB-PT-COF和PT-PBCOF在表面积、结晶度和电荷转移行为上表现出显著差异,这与H2O2光催化效率的两倍差异有关。结合实验结果和理论计算表明,PB-PT-COF与H2O具有较强的相互作用,有利于H2O的直接氧化,而PT-PB-COF对分子氧具有有效的吸附和活化作用,从而显著提高了H2O2的光合效率。这项工作进一步证明了COFs的异构化可以导致明显不同的光电性能,这将为COFs的结构设计提供新的见解。
论文链接:https://doi.org/10.1002/smll.202406527
文字横幅丨文字自动向右滚动丨字幕动画