Carbohydrate Polymers:超疏水有机硅互穿交联网络增强的优质阻燃磷酸化壳聚糖生物基多孔复合材料的制备

文摘   2024-09-09 09:02   瑞典  
      青岛科技大学高分子科学与工程学院吴宁晶教授团队在Carbohydrate Polymers发表题目为“Fabrication of superior flame-retardant phosphorylated chitosan biobased porous composites reinforced by superhydrophobic silicone interpenetrating crosslinking networks”研究论文(超疏水有机硅互穿交联网络增强的优质阻燃磷酸化壳聚糖生物基多孔复合材料的制备)。
摘要:
      壳聚糖基多孔材料有望发展成为新一代高性能可持续隔热材料。本研究通过甲基三甲氧基硅烷(MTMS)原位交联制备疏水增强型磷酸化多孔材料(PCSM),并进一步将改性SiO2纳米粒子(H-SiO2)引入交联网络中,制备超疏水增强型PCSM-H-SiO2多孔复合材料。PCSM-H-SiO2多孔材料的形貌呈现特殊的微纳米级“珠串状”粗糙互穿孔壁结构,使其具有超疏水与自清洁能力,PCSM-H-SiO2多孔复合材料的水接触角(WCAs)最高可达150o,PCSM2-H-SiO2–2多孔复合材料的压缩模量和比模量显著提高,分别为11.0 MPa和89.6 m2·s−2,分别是PCS多孔材料的5.39倍和1.74倍。PCSM2-H-SiO2–2多孔复合材料的极限氧指数(LOI)值均在80%以上,锥形量热仪测试结果表明PCSM-H-SiO2–2多孔复合材料的峰值热释放速率和总热释放速率值均低于PCS多孔材料。超高阻燃PCSM-H-SiO2–2多孔复合材料具有超疏水性和优异的压缩性能,是一种很有前途的可生物降解隔热材料,可替代石油基材料。
研究结果:
3.1 PCSM和PCSM2-H-SiO2多孔复合材料的结构表征
Fig. 1. (a) FT–IR spectra of PCS, PCSM2, and PCSM2-H-SiO2–2 (4000–400 cm−1), (b) Enlarged FT–IR of PCS, PCM2 and PCM2-H-SiO2–2 (2000–400 cm–1). (c) X–ray diffraction spectra of PCS, PCSM2, and PCSM2-H-SiO2–2; (d) Structural schematic diagram of PCSM and PCSM-H-SiO2 porous materials.
3.2 PCSM和PCSM-H-SiO2多孔材料的形貌
Fig. 2. SEM photographs of PCSM porous composites at low magnification.
Fig. 3. SEM photographs of the pore walls of PCSM porous composites at high magnification.
Fig. 4. SEM photographs of PCSM-H-SiO2 porous composites at low magnification.
Fig. 5. SEM photographs of the pore walls of PCSM2-H-SiO2 porous composites.
3.3 PCSM和PCSM-H-SiO2多孔复合材料的疏水性和自清洁能力
Fig. 6. WCA testing images of the PCSM (a) and PCSM2-H-SiO2 (b) porous composites at transverse and vertical profiles, (c) Dynamic WCA testing images of the PCS, PCSM, and PCSM2-H-SiO2 porous materials, (d) Self-cleaning testing images of the PCS, PCSM2, and PCSM2-H-SiO2–2 porous materials.
3.4 PCSM和PCSM-H-SiO2多孔复合材料的物理和机械性能
Fig. 7. Compressive curves (a, c) and compressive property (b, d) of the PCS, PCSM, and PCSM2-H-SiO2 porous materials.
3.5. 阻燃性能及阻燃机理
Fig. 8. UL-94 vertical burning test screenshots of PCSM2 and PCSM2-H-SiO2–2 porous composites.
Fig. 9. Cone calorimeter test curves of PCS, PCSM2 and PCSM2-H-SiO2–2 porous materials.
Fig. 10. Photographs of the char residues of the PCS, PCSM2, and PCSM2-H-SiO2–2 porous materials after CCT, (b) SEM images of the char residues of the PCSM2, and PCSM2-H-SiO2–2, (c) Schematic diagram of flame-retardant mechanism of the PCSM2-H-SiO2 porous materials.
Fig. 11. Temperature change curves (a) PCS, (a') PCSM2, (a'′) PCSM2-H-SiO2–2 porous materials, and thermal-sensing images of (b) PCS, (b') PCSM2, (b'′) PCSM2-H-SiO2–2 porous materials on heating surfaces of different thermal condition: 1: 100 °C, 2: 150 °C, 3: 200 °C.
原文链接:

https://doi.org/10.1016/j.carbpol.2024.122540

在线投稿平台链接https://www.wjx.cn/vm/rurx9OX.aspx

设置星标,不错过精彩推文
开放转载
欢迎转发到朋友圈和微信群
版权申明

原创内容仅代表原创编译,本平台不主张对原文的版权。本平台转载仅仅是出于学术交流和传播信息的需要,不存在任何商业性质,并不意味着代表本平台观点或证实其内容的真实性。转载文章版权归原作者所有,作者如果不希望被转载或有侵权行为,请私信本平台删除。小编水平有限,如有错误,请见谅。
在看,传递您的品味

食品科学food science
本平台提供关于食品及生物医药相关的科学研究,快讯,会议,研讨会和培训等消息的发布和推广,姊妹号:食品技术food technology,投稿合作请后台私信或联系scifood@126.com
 最新文章