01
原文:Xunzhuo Xi, Yangyang Chen, Feng Tang, and Desmond Chun Yip Yuen. It’s all about timing: Analyst forecasts during weekday non-trading hours. SSRN Electronic Journal, 2024.
It’s All About Timing: Analyst Forecasts During Weekday Non-Trading Hours
ABSTRACT: This study examines whether financial analysts purposefully issue more pessimistic earnings forecasts during weekday non-trading hours. We show that downward forecast revisions released during weekday non-trading hours draw less market attention, resulting in weaker negative stock price reactions than those released on weekends or trading hours. Such differential market responses to bad news provide analysts with an opportunity to minimize the adverse market impacts of their negative forecasts. Consistent with this notion, we find that analysts are more likely to issue downward forecast revisions during weekday non-trading hours than during weekends or trading hours. We further suggest that the incentive for timing decisions is related to analysts’ rational considerations of forecast quality. Specifically, the documented timing phenomenon is more prominent for analysts who are less certain about negative earnings forecasts due to more opaque information environment of the forecasted firms and less forecasting experience and knowledge specific to these firms. Our findings offer new insights into analysts’ strategic forecasting behaviors.
一切都与时机有关:分析师在工作日非交易时段的预测
摘要:文章研究考察了金融分析师是否有意在工作日非交易时段发布更为悲观的盈利预测。研究发现,在工作日非交易时段发布的下调预测修正较少引起市场关注,导致股价的负面反应比周末或交易时段发布的预测要弱。市场对坏消息的这种不同反应为分析师提供了一个机会,使他们能够尽量减少负面预测对市场的不利影响。与此观点一致,文章发现分析师在工作日非交易时段发布下调预测修正的可能性比周末或交易时段更大。进一步研究表明,时机决策的动机与分析师对预测质量的理性考虑有关。具体而言,由于预测公司的信息环境更不透明,预测经验和知识较少,对负面盈利预测不太确定的分析师的记录时机现象更为突出。文章的研究结果为分析师的战略预测行为提供了新的见解。
亮点:(1)新的机制:文章发现,分析师的自信程度也会影响其发布负面预测的时间选择,对预测准确性较不自信的分析师更倾向于在非交易时间发布负面预测,这补充了Rees, Sharp and Wong(2017)发现的机制。(2)新的指标:本文以盈利预测的下调来反映分析师发布的负面消息。相比于Rees, Sharp and Wong(2017)使用的股票推荐降级指标,盈利预测的下调更能敏感、更好地反映分析师发布的负面消息。这是因为,预期公司未来业绩下降的分析师会下调每股收益预测,但不一定会下调股票推荐水平。(3)新的更细致的发现。本文首次系统性地研究了分析师在工作日非交易时间(主要是晚上)发布负面盈余预测的行为,并对比了其在交易时间、周末发布预测的情况,发现分析师下调预测最有可能在工作日非交易时间发布,最不可能在交易时间发布,周末发布的可能性介于两者之间。基于此,Rees, Sharp and Wong(2017)发现的周末发布负面预测的可能性高于工作日,可能是由于在交易时间发布此类坏消息的倾向低于在工作日非交易时间发布此类坏消息。
02
原文:Guangyu Li, Crawford Spence, and Zhong Chen. Gender differences in sell-side analysts’ corporate site visits, SSRN Electronic Journal, 2024.
Gender Differences in Sell-Side Analysts’ Corporate Site Visits
ABSTRACT: Despite extensive research on gender disparities in sell-side analysts' calculative practices and performance, the impact of gender on their social dynamics remains underexplored. This study addresses this gap by examining gender differences in sell-side analysts' social interactions with company management using a unique dataset of corporate site visits. We find that female analysts have less access to listed firms than their male counterparts. When granted access, female analysts are more likely to engage in relational site visits with institutional investors, whereas male analysts focus on instrumental visits. Additionally, site visits involving female analysts elicit weaker abnormal returns, suggesting potential bias against female analysts in significant interactions. We identify two mechanisms behind these differences: resource imbalances in male-dominated brokerage houses and gender homophily in financial networks. Our findings contribute to literature on gender issues in capital markets and burgeoning research on the significance of social interactions within the investment chain.
卖方分析师公司实地考察中的性别差异
摘要:尽管对卖方分析师预测实践和绩效中的性别差异进行了广泛的研究,但性别对其社会动态的影响仍未得到充分探索。这篇文章使用独特的公司实地考察数据集,研究卖方分析师与公司管理层的社交互动中的性别差异来解决这一差距。研究发现,女性分析师比男性分析师接触上市公司的机会更少。获得访问权限后,女性分析师更有可能与机构投资者进行关系实地考察,而男性分析师则专注于工具性考察。此外,涉及女性分析师的实地考察引发的异常收益较弱,这表明在重要互动中可能存在对女性分析师的偏见。文章发现了这些差异背后的两种机制:男性主导的券商公司的资源不平衡和金融网络中的性别同质性。文章的研究结果有助于研究资本市场中的性别问题,并促进对投资链中社会互动重要性的研究。
亮点:这篇文章的研究结果为金融市场的性别平等问题提供了新的视角和证据,对推动性别平等在金融市场中的实现具有重要意义。(1)相较于以往从预测实践和绩效的角度进行分析师性别差异研究,这篇文章首次从社会互动的角度深入研究了卖方分析师与公司管理层之间的性别差异,填补了该领域研究的空白。(2)文章使用了包含男性主导的经纪公司中性别不平衡和金融网络中性别同质性的独特数据集,分析了组织权力和性别同质性如何影响女性分析师对公司访问的障碍,包括访问次数较少、覆盖范围较窄等,对理解性别差异在金融市场中的作用具有重要意义。(3)通过利用卖方分析师背景的丰富数据集,文章研究了女性分析师在面对性别差异时如何采取战略适应行为,如调整访问方式等,这一发现有助于理解女性分析师如何在不利条件下保持竞争力和强大的韧性。
03
原文:Ari Yezegel, Xiao-Jun Zhang, and Summer Zhao. Measuring analyst question quality in conference calls: A machine learning approach. SSRN Electronic Journal, 2024.
Measuring Analyst Question Quality in Conference Calls:
A Machine Learning Approach
ABSTRACT: We use supervised machine learning methods to measure the quality of analysts’ questions during earnings conference calls. Our validation tests confirm that high-quality questions, as identified by our algorithm, are associated with longer responses, greater management participation, less obfuscated answers, and a higher likelihood of non-answer responses. Using our question quality measure, we find that calls with high-quality questions are associated with greater subsequent stock liquidity, lower stock return volatility, and less abnormal trade volume. The effects are more pronounced for firms with more opaque information environments (e.g., less analyst following, lower institutional ownership, and greater analyst forecast dispersion). Additionally, we find that high-quality questions tend to focus on firm operations, are longer, more complex, less aggressive, forward-looking, and open-ended. Our findings have implications for market participants and regulators concerned with enhancing the effectiveness of corporate communications and information dissemination in capital markets.
衡量电话会议中分析师问题的质量:一种机器学习方法
摘要:文章使用监督机器学习方法来衡量收益电话会议期间分析师问题的质量。验证测试证实,这篇文章的算法确定的高质量问题与更长的响应、更多的管理层参与、更少的模糊答案以及更高的无答案响应可能性相关。使用问题质量衡量标准,研究发现,包含高质量问题的电话会议与更高的后续股票流动性、更低的股票回报波动性和更少的异常交易量相关。对于信息环境更不透明的公司(例如,分析师跟踪较少、机构所有权较低、分析师预测分散性较大),这种影响更为明显。此外,作者发现高质量问题往往侧重于公司运营,时间更长、更复杂、更不激进、更具前瞻性且开放。这篇文章的研究结果对关注提高资本市场企业沟通和信息传播有效性的市场参与者和监管机构具有重要意义。
亮点:(1)文章首次系统性地探究了分析师在盈余发布会中提问质量对资本市场行为和信息环境的影响。文章表明资本市场的运作不仅取决于管理者披露相关财务信息的努力,还取决于外部用户寻求此类信息的努力,这超越了传统的以供应方为中心的信息披露观点。通过认识到沟通的互动性质,这篇文章有助于更全面地了解披露在资本市场中的作用。此外,文章还补充检验了提问质量对于信息环境透明度不同的公司的不同影响,发现高质量提问在信息透明度较低的公司中更为有效,这为理解提问质量在不同信息环境下的作用提供了重要洞见。(2)这篇文章还创新性地使用监督机器学习方法来量化分析师提问的质量。这种基于机器学习的模型的引入填补了收益电话会议文献中的一个重要空白,并为实证研究人员创造了机会来研究问题质量在其他环境中的作用,包括股东大会和投资者论坛等。(3)这篇文章对提问质量的时间趋势进行了分析,发现近年来提问质量整体呈现下降趋势。这一发现提示了分析师在盈余发布会中提问行为的可能变化,为未来研究提供了新的方向。
本文仅用于学术交流
原文版权归原作者和原发刊所有
转载请注明出处
总编:游家兴
解析:骆美婷
审校:苏三妹 骆美婷
编辑:潘芳妍