医线心声 | 上篇:心肌逆向重塑的概念和触发因素
健康
健康
2024-09-30 17:24
北京
每年报告的心血管疾病新病例超过1200万例,导致欧美有1.13亿患者患病[1]。心脏病导致心肌重塑,这是病理生理刺激(缺血、血流动力学负荷、神经体液激活等)造成的几何和功能改变的组合[2-3]。考虑到该器官的再生能力有限,这些改变可能会损害这些患者的临床结果并导致心力衰竭(HF)。心脏重塑是一个多细胞过程,涉及不同的心肌细胞类型和细胞外基质(ECM),包括分子到器官水平的适应。随着心脏重塑,重要的细胞变化(如肥大、兴奋-收缩偶联、炎症、细胞存活信号和线粒体紊乱)和ECM改变(如纤维化)会影响重塑的进展和严重程度[2]。
逆向重塑一词被定义为心脏经历结构和功能变化,导致改善或恢复到更正常状态的过程。RR可由任何药物治疗[4]、介入/手术程序(如心室辅助装置、血运重建、再同步或瓣膜手术)[5]、或某些生理事件或生活方式改变(如分娩、体重明显减轻或戒酒)后引起[6]。RR的一个有趣方面是心室对干预的广泛反应。虽然一些患者表现出持续的心脏改善,但其他患者表现出不完全的RR(功能和结构恢复有限),或心脏功能进一步恶化,称为不良重塑(AR)。影响RR结果和预后的因素多种多样,包括高血压、冠状动脉疾病(CAD)、肥胖、糖尿病(DM)、年龄、性别、遗传风险、生活方式因素(如吸烟、过量饮酒和物质使用、营养和久坐行为),以及干预前心室收缩和/或舒张功能障碍、心肌肥大和纤维化的程度[7-8]。在临床实践中,射血分数(EF)、左心室(LV)舒张末期/收缩末期容积、质量和球度指数的变化通常可以替代重塑或RR[6,9-11]。“心肌恢复”代表了RR的理想结果,其特征是持续、有利的临床反应,与较低的长期死亡率、心脏生物标志物的正常化、运动耐受性的提高[5]和未来HF[7]风险的降低相关。
目前对心脏(逆向)重塑程度的了解主要依赖于成像技术,特别是超声心动图,以及心脏磁共振(CMR)。这些方法测量心腔大小、左心室质量(LVM)和功能参数,如LVEF和心肌应变。与超声心动图相比,CMR具有更高的准确性、可重复性、时空分辨率和组织特征。例如,T1标测通过量化细胞外体积分数评估间质纤维化,而晚期钆增强(LGE)的增强CMR测量局灶性纤维化(瘢痕心肌)[12-14]。至关重要的是,心脏成像参数可以单独或与其他基线变量(如心脏应激或心肌重塑的循环生物标志物)结合预测干预/手术后的RR/AR,从而提高预测模型的准确性[15-16]。压力超负荷可由多种原因引起,如高血压(原发性或继发性)、主动脉瓣狭窄(AS),在较小程度上,还可由瓣膜下(主动脉下)狭窄和主动脉缩窄引起[17]。高血压和AS是主要原因,许多药物显示出控制高血压的有效性[18-57]。在欧洲,AS仍是主要的瓣膜疾病,需通过经导管主动脉瓣置换术(TAVR)或主动脉瓣置换手术(SAVR)进行干预[58]。主动脉瓣开放受限增加左心室后负荷,促使心肌重塑,其特征是肥大、胎儿基因程序的重新激活和间质纤维化[59]。主动脉瓣置换术(AVR,包括TAVR/SAVR)可促进心肌RR,包括肥大减少、舒张功能正常化和分子重塑[60]。舒张功能障碍的改善取决于阻止间质纤维化(由基质金属蛋白酶[MMP]介导,压倒金属蛋白酶组织抑制剂[TIMP]的活性)、胶原亚型转换(从更硬的I型到更柔顺的III型)和主动舒张机制的恢复(肌浆/内质网钙ATP酶2A和其他钙处理蛋白的表达升高)的进展[61-63]。主动脉瓣置换术后RR的程度在很大程度上取决于瓣膜置换术前的重塑程度。瓣膜和动脉水平的左心室后负荷完全正常化势是RR的前提[64-65]。事实上,不受控制的高血压、心脏淀粉样变性或假体-患者不匹配会增加不完全RR/AR的风险[66-67]。即使在类似后负荷的情况下,高血压AS患者的RR也较差,这是通过瓣膜-动脉阻抗(累积瓣膜和动脉超负荷的一种测量方法)评估,强调了神经体液激活的扩散[67],已知在心血管疾病的各个谱中都会使AR持续存在[68-69]。 既往糖尿病独立预测主动脉瓣置换术后1年僵硬和肥大增加[67,70]。糖尿病AS患者表现出左心室质量恢复不足、心肌被动力较高和间质纤维化[71]。此外,肥胖增加主动脉瓣置换术后左心室肥大的风险,这可能是由于心脏脂肪变性[72]。然而,关于肥胖之间关联的研究主动脉瓣置换术后的生存率得出了令人困惑的结果,一些人认为重度肥胖患者的生存率更高(“肥胖悖论”) [73],而另一些人则认为仅对超重而非肥胖患者有保护作用[74],还有一些人反驳了任何保护作用[75]。患有中度CAD的非血运重建AS患者在主动脉瓣置换术后3年的RR较差,LVM和LV大小的减小较慢[76]。除了左心室质量恢复较慢外。根据CMR追踪的心肌内周向应变评估,同时患有AS和CAD的亚群机械性能较仅患有AS的个体低约50%[77]。年龄和性别对RR的影响存在争议。虽然一项系统研究发现性别对LVM恢复没有影响[78],但证据表明,女性肥大恢复可能更快[79],老年患者主动脉瓣置换术后生存率较低[80]。 与AS类似,长期暴露于动脉高血压引起的血流动力学应激导致左心室形状、大小或功能的变化[81-82],最终导致HF[81,83-84]。当与其他风险因素结合时,这些改变更为显著,通常导致额外的肥大效应[85-86]。特定药物在三个层面上影响高血压患者的长期RR和预后:预防心肌细胞肥大和死亡,逆转间质改变(炎症和纤维化)以减少僵硬,促进冠状动脉血管生成以增强氧气和营养供应[82,87-88]。例如,β受体阻滞剂在高血压患者中的抗纤维化作用仍存在争议[33,89],部分原因是β受体阻滞剂类型的差异[90],而血管紧张素转换酶抑制剂(ACEi)和血管紧张素受体阻滞剂(ARB)已经确立了抗纤维化作用[91-92]。对于AS或全身性高血压,LVM恢复是评估RR的主要终点[9,93-104]。较高的基线左心室质量始终预测主动脉瓣置换术后LVM的独立恢复[67,105-106],尽管存在已知RR阴性预测因素的合并症,但具有更大的逆转肥大的潜力[67,72,107]。在AS中,主动脉瓣置换术前纤维化和瓣膜动脉阻抗与LVM恢复相关,并可预测LVM的恢复[64-65]。返流更多的患者表现出左心室几何形状的正常化较慢和舒张功能较差[108],返流较少(无LGE)时观察到LVM恢复较大[109]。舒张功能障碍引发左心房(LA)重塑,导致腔内压力升高,被认为是主动脉瓣置换术后收缩功能障碍[110]和更严重的整体收缩功能障碍的独立预测因素。主动脉瓣置换术后3个月心房纵向应变峰值[111]。相反,基线心房张力降低可能会损害舒张功能正常化,导致主动脉瓣置换术后左心房压力升高[112]。值得注意的是,任何方向(径向、周向和纵向全局)的心肌应变都可以预测主动脉瓣置换术后LVM的恢复[113]。分子标记物,如血浆miR-133a,已被证明可以预测左心室肥大的可逆性[114]。早期识别主动脉瓣置换术后RR受限的患者,其特征是明显的残余肥大、左心房扩大和舒张功能障碍,这至关重要,因为他们的预后较差,包括住院和死亡。主动脉瓣置换术后残余肥大与非致命性HF相关住院、瓣膜再介入、心肌梗死(MI)、完全性房室传导阻滞和左心室流出道梗阻有关[9,93]。术后1年左心室肥大,加上左心房扩张,与主要的心脑血管不良事件和3年死亡率增加有关[94]。一项使用日本注册J-PROVE-Retro的大型长期研究(>9年随访)证实,主动脉瓣置换术后1年肥大和左心房扩张增加的患者更有可能因HF住院或心脏死亡风险更高[95]。在慢性主动脉瓣反流中,容量超负荷引发心脏重塑,其特征是左心室扩张和偏心性肥大向更球形的方向发展[115]。主动脉瓣置换术后诱发RR成功的手术,改善了心室收缩和舒张功能,纽约心脏协会(NYHA)的等级和生活质量[116-117]。尽管主动脉瓣置换术后LVEF早期下降,但术后1年内出现显著改善,此后持续存在,其特征是左心室尺寸减小和LVM恢复趋势[117-119]。术前指数左心室收缩末期直径或容积和LVEF独立预测不完全RR[118-119],而主动脉瓣置换前的限制性舒张充盈似乎会损害左心室RR[116]。术后左心室整体工作指数受损与左心室RR恶化显著相关,可能是由于心肌纤维化增加[120]。不完全RR与致命性室性心律失常、HF或心脏死亡导致的更多再住院有关[119,121]。在终末期肾病(ESRD)中,心脏结构的特征是左心室肥大和舒张功能障碍,随着疾病进展,这可能会发展为扩张表型[122-123]。这一进展主要归因于尿毒症毒素以及血流动力学因素,如通过水钠滞留导致的体积增加和与动静脉瘘和贫血相关的高血流量[122,124]。尿毒症毒素是心脏抑制剂,可引起钠钾ATP酶泵功能障碍[124]。在接受血液透析的患有ESRD和非缺血性扩张型心肌病(DCM)的年轻男性中,通过减少干重和限制钠和水的摄入进行最佳的游离体容量管理,可导致心脏RR,其特征是LVEF的逐渐改善与左室和左房扩张的消退有关[122,125]。这种RR,也称为反向尿毒症心肌病,在肾移植(ESRD治疗的最有效形式[122-124,126])后1个月内进一步增强,LVM减少是RR的重要预测因素[123,127]。据报道,肾移植后6个月LVM减少与整体纵向应变(GLS)改善之间存在显著相关性[128]。瓣膜性心脏病、CAD或HF、DM和血红蛋白变化史是肾移植后RR的预测因素[129],并与长期心血管发病率和死亡率的降低有关[126-127]。在全球范围内,心血管疾病仍是发病率和死亡率的主要原因,导致压力超负荷、缺血或遗传变异等各种损伤引起的不同心脏重塑模式。干预措施旨在诱导心脏RR,并受到初始心脏应激和危险因素的影响。虽然LVM、LVEF、左室体积、QRS持续时间和心肌瘢痕等传统因素一直可以预测RR,但个性化的多尺度信息,包括遗传学、代谢、炎症和人工智能,为预测个体治疗反应和评估RR潜力提供了关键途径。
中国高血压联盟理事,中国心力衰竭学会委员,中国老年医学会高血压分会天津工作组副组长,中国医疗保健国际交流促进会高血压分会委员
天津医学会心血管病专业委员会委员,天津医学会老年病专业委员会常委,天津市医师协会高血压专业委员会常委,天津市医师协会老年病专业委员会委员,天津市医师协会心力衰竭专业委员,天津市医师协会心血管内科医师分会双心专业委员会委员,天津市心脏学会理事,天津市心律学会第一届委员会委员,天津市房颤中心联盟常委,天津市医药学专家协会第一届心血管专业委员会委员,天津市药理学会临床心血管药理专业委员会常委,天津市中西医结合学会心血管疾病专业委员会常委
《中华临床医师杂志(电子版)》特邀审稿专家,《中华诊断学电子杂志》《心血管外科杂志(电子版)》审稿专家,《华夏医学》副主编,《中国心血管杂志》常务编委,《中国心血管病研究》杂志第四届编委,《中华老年心脑血管病杂志》《世界临床药物》《医学综述》《中国医药导报》《中国现代医生》编委
本人在专业期刊和心血管网发表文章979篇,其中第一作者790篇,参加著书11部。获天津市2005年度“五一劳动奖章和奖状”和“天津市卫生行业第二届人民满意的好医生”称号
1. Timmis A, Vardas P, Townsend N, Torbica A, Katus H, De Smedt D, et al.;AtlasWriting Group, European Society of Cardiology. European Society of Cardiology:Cardiovascular disease statistics 2021. Eur Heart J 2022;43:716–799.
2. Metra M, Ponikowski P, Dickstein K, McMurray JJ, Gavazzi A, Bergh CH, et al.;Heart Failure Association of the European Society of Cardiology. Advanced
chronic heart failure: A position statement from the Study Group on Advanced
Heart Failure of the Heart Failure Association of the European Society of
Cardiology. Eur J Heart Fail 2007;9:684–694.
3. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling – concepts and clinical
implications: A consensus paper from an international forum on cardiac remodeling.Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol
4. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Bohm M, et al.;ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and
treatment of acute and chronic heart failure: Developed by the Task Force for
the diagnosis and treatment of acute and chronic heart failure of the European
Society of Cardiology (ESC).With the special contribution of the Heart Failure
Association (HFA) of the ESC. Eur J Heart Fail 2022;24:4–131.
5. Kim GH, Uriel N, Burkhoff D. Reverse remodelling and myocardial recovery in
heart failure. Nat Rev Cardiol 2018;15:83–96.
6. Hnat T, Veselka J, Honek J. Left ventricular reverse remodelling and its predictors
in non-ischaemic cardiomyopathy. ESC Heart Fail 2022;9:2070–2083.
7. Mann DL, Barger PM, Burkhoff D. Myocardial recovery and the failing heart:Myth, magic, or molecular target? J Am Coll Cardiol 2012;60:2465–2472.
8. Rodrigues PG, Leite-Moreira AF, Falcao-Pires I. Myocardial reverse remodeling:How far can we rewind? Am J Physiol Heart Circ Physiol 2016;310:H1402–H1422.
9. Xu H, Duan Y, Yuan X, Wu H, Song Y, Xu J, et al. Residual left ventricular
hypertrophy with adverse clinical outcomes in patients with severe aortic
stenosis and asymmetric septal hypertrophy after aortic valve replacement. Eur
J Cardiothorac Surg 2019;56:343–350.
10. Rizzello V, Poldermans D, Boersma E, Biagini E, Schinkel AF, Krenning B, et al.Opposite patterns of left ventricular remodeling after coronary revascularization
in patients with ischemic cardiomyopathy: Role of myocardial viability.Circulation 2004;110:2383–2388.
11. Hassell ME, Vlastra W, Robbers L, Hirsch A, Nijveldt R, Tijssen JG, et al.Long-term left ventricular remodelling after revascularisation for ST-segment
elevation myocardial infarction as assessed by cardiac magnetic resonance
imaging. Open Heart 2017;4:e000569.
12. Motiwala SR, Gaggin HK. Biomarkers to predict reverse remodeling and
myocardial recovery in heart failure. Curr Heart Fail Rep 2016;13:207–218.
13. Pontone G, Carita P, Rabbat MG, Guglielmo M, Baggiano A, Muscogiuri G, et al.Role of cardiac magnetic resonance imaging in myocardial infarction. Curr Cardiol
Rep 2017;19:101.
14. Treibel TA, Badiani S, Lloyd G, Moon JC. Multimodality imaging markers
of adverse myocardial remodeling in aortic stenosis. JACC Cardiovasc Imaging
2019;12:1532–1548.
15. Gonzalez A, Richards AM, de Boer RA, Thum T, Arfsten H, Hulsmann M, et al.Cardiac remodelling – Part 1: From cells and tissues to circulating biomarkers.A review from the Study Group on Biomarkers of the Heart Failure Association
of the European Society of Cardiology. Eur J Heart Fail 2022;24:927–943.
16. Aimo A, Vergaro G, Gonzalez A, Barison A, Lupon J, Delgado V, et al. Cardiac
remodelling – Part 2: Clinical, imaging and laboratory findings. A review from the
Study Group on Biomarkers of the Heart Failure Association of the European
Society of Cardiology. Eur J Heart Fail 2022;24:944–958.
17. Frohlich ED, Susic D. Pressure overload. Heart Fail Clin 2012;8:21–32.
18. Kojima M, Shiojima I, Yamazaki T, Komuro I, Zou Z, Wang Y, et al. Angiotensin
II receptor antagonist TCV-116 induces regression of hypertensive left
ventricular hypertrophy in vivo and inhibits the intracellular signaling pathway
of stretch-mediated cardiomyocyte hypertrophy in vitro. Circulation
1994;89:2204–2211.
19. Brodsky S, Gurbanov K, Abassi Z, Hoffman A, Ruffolo RR Jr, Feuerstein GZ,et al. Effects of eprosartan on renal function and cardiac hypertrophy in rats
with experimental heart failure. Hypertension 1998;32:746–752.
20. Kaneko K, Susic D, Nunez E, Frohlich ED. Losartan reduces cardiac mass
and improves coronary flow reserve in the spontaneously hypertensive rat.J Hypertens 1996;14:645–653.
21. Kai T, Sugimura K, Shimada S, Kurooka A, Takenaka T, Ishikawa K. Inhibitory
effects of a subdepressor dose of L-158,809, an angiotensin II type 1 receptor
antagonist, on cardiac hypertrophy and nephropathy via the activated human
renin-angiotensin system in double transgenic mice with hypertension. Jpn Circ J
1998;62:599–603.
22. Nunez E, Hosoya K, Susic D, Frohlich ED. Enalapril and losartan reduced
cardiac mass and improved coronary hemodynamics in SHR. Hypertension
1997;29:519–524.
23. Tamura T, Said S, Harris J, Lu W, Gerdes AM. Reverse remodeling of
cardiac myocyte hypertrophy in hypertension and failure by targeting of
the renin-angiotensin system. Circulation 2000;102:253–259.
24. Januzzi JL, Prescott MF, Butler J, Felker GM, Maisel AS, McCague K, et al.;PROVE-HF Investigators. Association of change in N-terminal pro-B-type natriuretic
peptide following initiation of sacubitril-valsartan treatment with cardiac
structure and function in patients with heart failure with reduced ejection fraction.JAMA 2019;322:1085–1095.
25. Wang Y, Zhou R, Lu C, Chen Q, Xu T, Li D. Effects of the angiotensin-receptor
neprilysin inhibitor on cardiac reverse remodeling: Meta-analysis. J Am Heart
Assoc 2019;8:e012272.
26. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, et al.;Prospective comparison of ARNI with ARB on Management Of heart fail-Ure with preserved ejectioN fracTion (PARAMOUNT) Investigators. The
angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved
ejection fraction: A phase 2 double-blind randomised controlled trial. Lancet
2012;380:1387–1395.
27. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al.;PARADIGM-HF Investigators and Committees. Angiotensin-neprilysin inhibition
versus enalapril in heart failure. N Engl J Med 2014;371:993–1004.
28. Ennis IL, Alvarez BV, Camilion de Hurtado MC, Cingolani HE. Enalapril induces
regression of cardiac hypertrophy and normalization of pHi regulatory mechanisms.Hypertension 1998;31:961–967.
29. Bohm M, Castellano M, Agabiti-Rosei E, Flesch M, Paul M, Erdmann E.Dose-dependent dissociation of ACE-inhibitor effects on blood pressure,cardiac hypertrophy, and beta-adrenergic signal transduction. Circulation
1995;92:3006–3013.
30. Pfeffer JM, Pfeffer MA, Mirsky I, Braunwald E. Regression of left ventricular
hypertrophy and prevention of left ventricular dysfunction by captopril in the
spontaneously hypertensive rat. Proc Natl Acad Sci U S A 1982;79:3310–3314.
31. Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN; SOLVD Investigators. Effect of
enalapril on survival in patients with reduced left ventricular ejection fractions
and congestive heart failure. N Engl J Med 1991;325:293–302.
32. Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown EJ Jr, Cuddy TE, et al. Effect of
captopril on mortality and morbidity in patients with left ventricular dysfunction
after myocardial infarction. Results of the Survival and Ventricular Enlargement
trial. The SAVE Investigators. N Engl J Med 1992;327:669–677.
33. Ostman-Smith I. Reduction by oral propranolol treatment of left ventricular
hypertrophy secondary to pressure-overload in the rat. Br J Pharmacol
1995;116:2703–2709.
34. Kobayashi M, Machida N, Mitsuishi M, Yamane Y. Beta-blocker improves survival,left ventricular function, and myocardial remodeling in hypertensive rats with
diastolic heart failure. Am J Hypertens 2004;17:1112–1119.
35. Liu F, Chen Y, Feng X, Teng Z, Yuan Y, Bin J. Effects of beta-blockers
on heart failure with preserved ejection fraction: A meta-analysis. PLoS One
2014;9:e90555.
36. Cleland JG, Pennell DJ, Ray SG, Coats AJ, Macfarlane PW, Murray GD,et al.; Carvedilol Hibernating Reversible Ischaemia Trial: Marker of Success
investigators. Myocardial viability as a determinant of the ejection fraction
response to carvedilol in patients with heart failure (CHRISTMAS trial):Randomised controlled trial. Lancet 2003;362:14–21.
37. Randomised, placebo-controlled trial of carvedilol in patients with congestive
heart failure due to ischaemic heart disease. Australia/New Zealand Heart
Failure Research Collaborative Group. Lancet 1997;349:375–380.
38. Packer M, Fowler MB, Roecker EB, Coats AJ, Katus HA, Krum H, et al.;Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) Study
Group. Effect of carvedilol on the morbidity of patients with severe chronic
heart failure: Results of the Carvedilol Prospective Randomized Cumulative
Survival (COPERNICUS) study. Circulation 2002;106:2194–2199.
39. Palazzuoli A, Bruni F, Puccetti L, Pastorelli M, Angori P, Pasqui AL, et al. Effects
of carvedilol on left ventricular remodeling and systolic function in elderly
patients with heart failure. Eur J Heart Fail 2002;4:765–770.
40. Wollert KC, Drexler H. Carvedilol Prospective Randomized Cumulative
Survival (COPERNICUS) trial: Carvedilol as the sun and center of the
beta-blocker world? Circulation 2002;106:2164–2166.
41. Dargie HJ. Effect of carvedilol on outcome after myocardial infarction in patients
with left-ventricular dysfunction: The CAPRICORN randomised trial. Lancet
2001;357:1385–1390.
42. Packer M, Coats AJ, Fowler MB, Katus HA, Krum H, Mohacsi P, et al.; Carvedilol
Prospective Randomized Cumulative Survival Study Group. Effect of carvedilol
on survival in severe chronic heart failure. N Engl J Med 2001;344:1651–1658.
43. Groenning BA, Nilsson JC, Sondergaard L, Fritz-Hansen T, Larsson HB, Hildebrandt
PR. Antiremodeling effects on the left ventricle during beta-blockade
with metoprolol in the treatment of chronic heart failure. J Am Coll Cardiol
2000;36:2072–2080.
44. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised
Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet
1999;353:2001–2007.
45. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): A randomised trial.Lancet 1999;353:9–13.
46. Choi SW, Han S, Shim WJ, Choi DJ, Kim YJ, Yoo BS, et al. Impact of heart rate
reduction with maximal tolerable dose of bisoprolol on left ventricular reverse
remodeling. J Korean Med Sci 2018;33:e171.
47. Yamamoto K. β-Blocker therapy in heart failure with preserved ejection fraction:Importance of dose and duration. J Cardiol 2015;66:189–194.
48. Xu X,Wang DW. The progress and controversial of the use of beta blockers in
patients with heart failure with a preserved ejection fraction. Int J Cardiol Heart
Vasc 2020;26:100451.
49. Bergstrom A, Andersson B, Edner M, Nylander E, Persson H, Dahlstrom U.Effect of carvedilol on diastolic function in patients with diastolic
heart failure and preserved systolic function. Results of the Swedish
Doppler-echocardiographic study (SWEDIC). Eur J Heart Fail 2004;6:453–461.
50. Hernandez AF, Hammill BG, O’Connor CM, Schulman KA, Curtis LH, Fonarow
GC. Clinical effectiveness of beta-blockers in heart failure: Findings from the
OPTIMIZE-HF (Organized Program to Initiate Lifesaving Treatment in Hospitalized
Patients with Heart Failure) Registry. J Am Coll Cardiol 2009;53:184–192.
51. Yamamoto K, Origasa H, Suzuki Y, Takahashi T, Shinozaki T,Watanabe T, et al.;J-DHF Investigators. Relation of risk factors with response to carvedilol in heart
failure with preserved ejection fraction – a report from the Japanese Diastolic
Heart Failure Study (J-DHF). J Cardiol 2014;63:424–431. https://doi.org/10.1016/j.jjcc.2013.10.014
52. Imamura T, Oshima A, Narang N, Kinugawa K. Implication of mineralocorticoid
receptor antagonist esaxerenone in patients with heart failure with preserved
ejection fraction. Circ Rep 2021;3:660–665.
53. von Lewinski D, Kolesnik E, Tripolt NJ, Pferschy PN, Benedikt M, Wallner M,et al. Empagliflozin in acute myocardial infarction: The EMMY trial. Eur Heart J
2022;43:4421–4432.
54. Lee MMY, Brooksbank KJM, Wetherall K, Mangion K, Roditi G, Campbell
RT, et al. Effect of empagliflozin on left ventricular volumes in patients with
type 2 diabetes, or prediabetes, and heart failure with reduced ejection fraction
(SUGAR-DM-HF). Circulation 2021;143:516–525.
55. Zhang N,Wang Y, Tse G, Korantzopoulos P, Letsas KP, Zhang Q, et al. Effect of
sodium-glucose cotransporter-2 inhibitors on cardiac remodelling: A systematic
review and meta-analysis. Eur J Prev Cardiol 2022;28:1961–1973.
56. Dhingra NK, Mistry N, Puar P, Verma R, Anker S, Mazer CD, et al. SGLT2
inhibitors and cardiac remodelling: A systematic review and meta-analysis
of randomized cardiac magnetic resonance imaging trials. ESC Heart Fail
2021;8:4693–4700.
57. Yu YW, Zhao XM, Wang YH, Zhou Q, Huang Y, Zhai M, et al. Effect of
sodium-glucose cotransporter 2 inhibitors on cardiac structure and function
in type 2 diabetes mellitus patients with or without chronic heart failure: A
meta-analysis. Cardiovasc Diabetol 2021;20:25.
58. Vahanian A, Beyersdorf F, Praz F, Milojevic M, Baldus S, Bauersachs J, et al.;ESC/EACTS Scientific Document Group. 2021 ESC/EACTS Guidelines for the
management of valvular heart disease. Eur Heart J 2022;43:561–632.
59. Lindman BR, Clavel MA, Mathieu P, Iung B, Lancellotti P, Otto CM, et al. Calcific
aortic stenosis. Nat Rev Dis Primers 2016;2:16006.
60. Treibel TA, Kozor R, Schofield R, Benedetti G, Fontana M, Bhuva AN, et al.Reverse myocardial remodeling following valve replacement in patients with
aortic stenosis. J Am Coll Cardiol 2018;71:860–871.
61. Bjornstad JL, Skrbic B, Sjaastad I, Bjornstad S, Christensen G, Tonnessen T. A
mouse model of reverse cardiac remodelling following banding-debanding of the
ascending aorta. Acta Physiol (Oxf) 2012;205:92–102.
62. Ruppert M, Korkmaz-Icoz S, Li S, Nemeth BT, Hegedus P, Brlecic P, et al.Myocardial reverse remodeling after pressure unloading is associated with maintained
cardiac mechanoenergetics in a rat model of left ventricular hypertrophy.Am J Physiol Heart Circ Physiol 2016;311:H592–H603.
63. Gao XM, Kiriazis H, Moore XL, Feng XH, Sheppard K, Dart A, et al. Regression
of pressure overload-induced left ventricular hypertrophy in mice. Am J Physiol
Heart Circ Physiol 2005;288:H2702–H2707.
64. Jang JY, Seo JS, Sun BJ, Kim DH, Song JM, Kang DH, et al. Impact of valvuloarterial
impedance on concentric remodeling in aortic stenosis and its regression after
valve replacement. J Cardiovasc Ultrasound 2016;24:201–207.
65. Ito H, Mizumoto T, Shomura Y, Sawada Y, Kajiyama K, Shimpo H. The impact
of global left ventricular afterload on left ventricular reverse remodeling after
aortic valve replacement. J Card Surg 2017;32:530–536.
66. Imanaka K, Kohmoto O, Nishimura S, Yokote Y, Kyo S. Impact of postoperative
blood pressure control on regression of left ventricular mass following valve
replacement for aortic stenosis. Eur J Cardiothorac Surg 2005;27:994–999.
67. Gavina C, Falcao-Pires I, Rodrigues J, Marinho B, Goncalves N, Lopes R, et al.Load independent impairment of reverse remodeling after valve replacement in
hypertensive aortic stenosis patients. Int J Cardiol 2014;170:324–330.
68. Borovac JA, D’Amario D, Bozic J, Glavas D. Sympathetic nervous system
activation and heart failure: Current state of evidence and the pathophysiology
in the light of novel biomarkers. World J Cardiol 2020;12:373–408.
69. Abdellatif M, Rainer PP, Sedej S, Kroemer G. Hallmarks of cardiovascular ageing.Nat Rev Cardiol 2023;20:754–777.
70. Nakamura T, Toda K, Kuratani T, Miyagawa S, Yoshikawa Y, Fukushima S,et al. Diabetes mellitus impairs left ventricular mass regression after surgical
or transcatheter aortic valve replacement for severe aortic stenosis. Heart Lung
Circ 2016;25:68–74.
71. Falcao-Pires I, Hamdani N, Borbely A, Gavina C, Schalkwijk CG, van der Velden J,et al. Diabetes mellitus worsens diastolic left ventricular dysfunction in aortic
stenosis through altered myocardial structure and cardiomyocyte stiffness. Circulation
72. Einarsen E, Saeed S, Cramariuc D, Chambers JB, Midtbo H, Gerdts E. Impact of
obesity on persistent left ventricular hypertrophy after aortic valve replacement
for aortic stenosis. Am J Cardiol 2019;123:942–947.
73. Vaduganathan M, Lee R, Beckham AJ, Andrei AC, Lapin B, Stone NJ, et al.Relation of body mass index to late survival after valvular heart surgery.Am J Cardiol 2012;110:1667–1678.
74. Roberts WC, Roberts CC, Vowels TJ, Ko JM, Filardo G, Hamman BL, et al. Effect
of body mass index on survival in patients having aortic valve replacement for
aortic stenosis with or without concomitant coronary artery bypass grafting. Am
J Cardiol 2011;108:1767–1771.
75. Bruno VD, Chivasso P, Rapetto F, Guida G, Di Tommaso E, Chau HM, et al.Impact of body mass index on short- and long-term outcomes after isolated
first-time surgical aortic valve replacement for aortic stenosis. J Cardiothorac
Vasc Anesth 2019;33:2995–3000.
76. Vicente JA, Blasco IL, Perez PP, Sanchez BS, Nadal MR, Arroyo JR, et al. Impact
of moderate coronary atherosclerosis on long-term left ventricular remodeling
after aortic valve replacemen. Cardiol J 2011;18:277–281. PMID: 21660917.
77. Biederman RW, Doyle M, Yamrozik J, Williams RB, Rathi VK, Vido D, et al.Physiologic compensation is supranormal in compensated aortic stenosis: Does
it return to normal after aortic valve replacement or is it blunted by coexistent
coronary artery disease? An intramyocardial magnetic resonance imaging study.Circulation 2005;112:I429–I436.
78. Sharma UC, Barenbrug P, Pokharel S, Dassen WR, Pinto YM, Maessen JG.Systematic review of the outcome of aortic valve replacement in patients
with aortic stenosis. Ann Thorac Surg 2004;78:90–95.
79. Petrov G, Regitz-Zagrosek V, Lehmkuhl E, Krabatsch T, Dunkel A, Dandel
M, et al. Regression of myocardial hypertrophy after aortic valve replacement:Faster in women? Circulation 2010;122:S23–S28.
80. Gaudino M, Alessandrini F, Glieca F, Luciani N, Cellini C, Pragliola C, et al.Survival after aortic valve replacement for aortic stenosis: Does left ventricular
mass regression have a clinical correlate? Eur Heart J 2005;26:51–57.
81. Gonzalez A, Ravassa S, Lopez B, Moreno MU, Beaumont J, San Jose G,et al. Myocardial remodeling in hypertension. Hypertension 2018;72:549–558.
82. Knoll R, Iaccarino G, Tarone G, Hilfiker-Kleiner D, Bauersachs J, Leite-Moreira
AF, et al.; European Society of Cardiology. Towards a re-definition of
cardiachypertrophy’ through a rational characterization of left ventricular phenotypes:
A position paper of the Working Group ‘Myocardial Function’ of the ESC. Eur
J Heart Fail 2011;13:811–819.
83. Diez J, Gonzalez A, Lopez B, Querejeta R. Mechanisms of disease: Pathologic
structural remodeling is more than adaptive hypertrophy in hypertensive heart
disease. Nat Clin Pract Cardiovasc Med 2005;2:209–216.
84. Visco V, Pascale AV, Virtuoso N, Mongiello F, Cinque F, Gioia R, et al. Serum
uric acid and left ventricular mass in essential hypertension. Front Cardiovasc Med
2020;7:570000.
85. Nadruz W. Myocardial remodeling in hypertension. J Hum Hypertens
2015;29:1–6.
86. Palmieri V, Bella JN, Arnett DK, Liu JE, Oberman A, Schuck MY, et al.Effect of type 2 diabetes mellitus on left ventricular geometry and systolic
function in hypertensive subjects: Hypertension Genetic Epidemiology Network
(HyperGEN) study. Circulation 2001;103:102–107.
87. Gonzalez A, Ravassa S, Beaumont J, Lopez B, Diez J. New targets to treat the
structural remodeling of the myocardium. J Am Coll Cardiol 2011;58:1833–1843.
88. Tarone G, Balligand JL, Bauersachs J, Clerk A, De Windt L, Heymans S, et al.Targeting myocardial remodelling to develop novel therapies for heart failure:A position paper from the Working Group on Myocardial Function of the
European Society of Cardiology. Eur J Heart Fail 2014;16:494–508.
89. Ciulla MM, Paliotti R, Esposito A, Diez J, Lopez B, Dahlof B, et al. Different effects
of antihypertensive therapies based on losartan or atenolol on ultrasound and
biochemical markers of myocardial fibrosis: Results of a randomized trial. Circulation
90. Scridon A, Balan AI. Targeting myocardial fibrosis-a magic pill in cardiovascular
medicine? Pharmaceutics 2022;14:1599.
91. Passaro F, Tocchetti CG, Spinetti G, Paudice F, Ambrosone L, Costagliola C,et al. Targeting fibrosis in the failing heart with nanoparticles. Adv Drug Deliv Rev
2021;174:461–481.
92. de Boer RA, De Keulenaer G, Bauersachs J, Brutsaert D, Cleland JG, Diez J,et al. Towards better definition, quantification and treatment of fibrosis in heart
failure. A scientific roadmap by the Committee of Translational Research of the
Heart Failure Association (HFA) of the European Society of Cardiology. Eur
J Heart Fail 2019;21:272–285.
93. Gavina C, Falcao-Pires I, Pinho P, Manso MC, Goncalves A, Rocha-Goncalves F,et al. Relevance of residual left ventricular hypertrophy after surgery for isolated
aortic stenosis. Eur J Cardiothorac Surg 2016;49:952–959.
94. Hatani T, Kitai T, Murai R, Kim K, Ehara N, Kobori A, et al. Associations
of residual left ventricular and left atrial remodeling with clinical outcomes
in patients after aortic valve replacement for severe aortic stenosis. J Cardiol
2016;68:241–247. 95. Izumi C, Kitai T, Kume T, Onishi T, Yuda S, Hirata K, et al. Effect of left ventricular
reverse remodeling on long-term outcomes after aortic valve replacement. Am
J Cardiol 2019;124:105–112.
96. Daubert MA, White JA, Al-Khalidi HR, Velazquez EJ, Rao SV, Crowley AL, et al.Cardiac remodeling after large ST-elevation myocardial infarction in the current
therapeutic era. Am Heart J 2020;223:87–97.
97. van der Bijl P, Abou R, Goedemans L, Gersh BJ, Holmes DR Jr, Ajmone
Marsan N, et al. Left ventricular post-infarct remodeling: Implications for
systolic function improvement and outcomes in the modern era. JACC Heart
Fail 2020;8:131–140.
98. Chimed S, van der Bijl P, Lustosa R, Fortuni F, Montero-Cabezas JM, Ajmone
Marsan N, et al. Functional classification of left ventricular remodelling: Prognostic
relevance in myocardial infarction. ESC Heart Fail 2022;9:912–924.
99. Olsen C, Mandawat A, Sun JL, Triana T, Chiswell K, Karra R. Recovery of left
ventricular function is associated with improved outcomes in LVAD recipients.J Heart Lung Transplant 2022;41:1055–1062.
100. Mirza KK, Szymanski MK, Schmidt T, de Jonge N, Brahmbhatt DH, Billia F,et al.; PRO-VAD Investigators. Prognostic value of peak oxygen uptake in
patients supported with left ventricular assist devices (PRO-VAD). JACC Heart
Fail 2021;9:758–767.
101. Topilsky Y, Hasin T, Oh JK, Borgeson DD, Boilson BA, Schirger JA, et al.Echocardiographic variables after left ventricular assist device implantation
associated with adverse outcome. Circ Cardiovasc Imaging 2011;4:648–661.
102. Frigerio M, Lunati M, Pasqualucci D, Vargiu S, Foti G, Pedretti S, et al. Left ventricular
ejection fraction overcrossing 35% after one year of cardiac resynchronization
therapy predicts long term survival and freedom from sudden cardiac
death: Single center observational experience. Int J Cardiol 2014;172:64–71.
103. Stankovic I, Belmans A, Prinz C, Ciarka A, Maria Daraban A, Kotrc M, et al.The association of volumetric response and long-term survival after cardiac
resynchronization therapy. Eur Heart J Cardiovasc Imaging 2017;18:1109–1117.
104. van der Bijl P, Kostyukevich MV, Khidir M, Ajmone Marsan N, Delgado V, Bax
JJ. Left ventricular remodelling and change in left ventricular global longitudinal
strain after cardiac resynchronization therapy: Prognostic implications. Eur Heart
J Cardiovasc Imaging 2019;20:1112–1119.
105. Cramariuc D, Gerdts E, Segadal L. Impact of hypertension on left ventricular
hypertrophy regression and exercise capacity in patients operated for aortic
valve stenosis. Scand Cardiovasc J 2006;40:167–174.
106. Tao K, Sakata R, Iguro Y, Ueno T, Ueno M, Tanaka Y, et al. Abnormal Tei index
predicts poor left ventricular mass regression and survival after AVR in aortic
stenosis patients. J Cardiol 2009;53:240–247.
107. Mhagna Z, Tasca G, Brunelli F, Cirillo M, Amaducci A, DallaTomba M, et al.Effect of the increase in valve area after aortic valve replacement with a 19-mm
aortic valve prosthesis on left ventricular mass regression in patients with pure
aortic stenosis. J Cardiovasc Med (Hagerstown) 2006;7:351–355.
108. Puls M, Beuthner BE, Topci R, Vogelgesang A, Bleckmann A, Sitte M, et al. Impact
of myocardial fibrosis on left ventricular remodelling, recovery, and outcome
after transcatheter aortic valve implantation in different haemodynamic subtypes
of severe aortic stenosis. Eur Heart J 2020;41:1903–1914.
109. Dobson LE, Musa TA, Uddin A, Fairbairn TA, Swoboda PP, Erhayiem B, et al.Acute reverse remodelling after transcatheter aortic valve implantation: A link
between myocardial fibrosis and left ventricular mass regression. Can J Cardiol
2016;32:1411–1418.
110. Licker M, Cikirikcioglu M, Inan C, Cartier V, Kalangos A, Theologou T, et al.Preoperative diastolic function predicts the onset of left ventricular dysfunction
following aortic valve replacement in high-risk patients with aortic stenosis. Crit
Care 2010;14:R101.
111. Lisi M, Henein MY, Cameli M, Ballo P, Reccia R, Bennati E, et al. Severity of
aortic stenosis predicts early post-operative normalization of left atrial size
and function detected by myocardial strain. Int J Cardiol 2013;167:1450–1455.
112. Benfari G, Noni M, Onorati F, Cerrito LF, Pernigo M, Vinco G, et al. Effects of
aortic valve replacement on left ventricular diastolic function in patients with
aortic valve stenosis. Am J Cardiol 2019;124:409–415.
113. Hwang JW, Kim SM, Park SJ, Cho EJ, Kim EK, Chang SA, et al. Assessment
of reverse remodeling predicted by myocardial deformation on tissue tracking
in patients with severe aortic stenosis: A cardiovascular magnetic resonance
imaging study. J Cardiovasc Magn Reson 2017;19:80.
114. Garcia R, Villar AV, Cobo M, Llano M, Martin-Duran R, Hurle MA, et al.Circulating levels of miR-133a predict the regression potential of left ventricular
hypertrophy after valve replacement surgery in patients with aortic stenosis. J Am Heart Assoc 2013;2:e000211.
115. Ong G, Redfors B, Crowley A, Abdel-Qadir H, Harrington A, Liu Y, et al.Evaluation of left ventricular reverse remodeling in patients with severe aortic
regurgitation undergoing aortic valve replacement: Comparison between diameters
and volumes. Echocardiography 2018;35:142–147.
116. Iliut
L, Andronesi AG, Scafa-UdriS, te A, R˘adulescu B, Moldovan H, Furtunescu
FL, et al. Incidence and risk factors for long-term persistence of diastolic
dysfunction after aortic valve replacement for aortic stenosis compared with
aortic regurgitation. J Cardiovasc Dev Dis 2023;10:131.
117. Paraggio L, Burzotta F, Graziani F, Aurigemma C, Romagnoli E, Pedicino D, et al.Transcatheter aortic valve implantation in pure aortic regurgitation: Hemodynamic
and echocardiographic findings in bioprosthesis vs. native valve. Catheter
Cardiovasc Interv 2022;99:1599–1608.
118. Fan X, Xu X, Zhang B, Lu J, Ma Y, Tang Y, et al. Long-term outcomes after
aortic valve surgery in patients with aortic regurgitation with preserved ejection
fraction and left ventricular dilation. Gen Thorac Cardiovasc Surg 2023;71:51–58.
119. Koga-Ikuta A, Fukushima S, Kawamoto N, Saito T, Shimahara Y, Yajima S,et al. Reverse remodelling after aortic valve replacement for chronic aortic
regurgitation. Interact Cardiovasc Thorac Surg 2021;33:10–18.
120. Meucci MC, Butcher SC, Galloo X, van der Velde ET, Marsan NA, Bax JJ,et al. Noninvasive left ventricular myocardial work in patients with chronic
aortic regurgitation and preserved left ventricular ejection fraction. J Am Soc
Echocardiogr 2022;35:703–711.e3.
121. Zhang MK, Li LN, Xue H, Tang XJ, Sun H, Wu QY. Left ventricle reverse
remodeling in chronic aortic regurgitation patients with dilated ventricle after
aortic valve replacement. J Cardiothorac Surg 2022;17:8.
122. Ursi R, Pesce F, Albanese M, Pavone V, Grande D, Ciccone MM, et al.Reverse cardiac remodeling after fluid balance optimization in patients with
end-stage renal disease. Hemodial Int 2022;26:345–350.
123. Hamidi S, Kojuri J, Attar A, Roozbeh J, Moaref A, Nikoo MH. The effect of kidney
transplantation on speckled tracking echocardiography findings in patients on
hemodialysis. J Cardiovasc Thorac Res 2018;10:90–94.
124. Burt RK, Gupta-Burt S, Suki WN, Barcenas CG, Ferguson JJ, Van Buren
CT. Reversal of left ventricular dysfunction after renal transplantation.Ann Intern Med 1989;111:635–640.
125. Wali RK, Wang GS, Gottlieb SS, Bellumkonda L, Hansalia R, Ramos E, et al.Effect of kidney transplantation on left ventricular systolic dysfunction and
congestive heart failure in patients with end-stage renal disease. J Am Coll Cardiol
126. Hawwa N, Shrestha K, Hammadah M, Yeo PSD, Fatica R, Tang WHW.Reverse remodeling and prognosis following kidney transplantation in contemporary
patients with cardiac dysfunction. J Am Coll Cardiol 2015;66:1779–1787.
127. Pickup LC, Law JP, Radhakrishnan A, Price AM, Loutradis C, Smith TO,et al. Changes in left ventricular structure and function associated with
renal transplantation: A systematic review and meta-analysis. ESC Heart Fail2021;8:2045–2057.声明:本文仅供医疗卫生专业人士了解最新医药资讯参考使用,不代表本平台观点。该信息不能以任何方式取代专业的医疗指导,也不应被视为诊疗建议,如果该信息被用于资讯以外的目的,本站及作者不承担相关责任。
凡原创文章版权属《国际循环》所有。欢迎个人转发分享。其他任何媒体、网站如需转载或引用本网版权所有之内容须在醒目位置处注明“转自《国际循环》”