点击蓝字 关注我们
全文概述
图文解析
石墨分散
Figure 1: Optical characterization of graphite dispersions.
a, Dispersions of graphite flakes in NMP, at a range of concentrations ranging from 6 µg ml−1 (A) to 4 µg ml−1 (E) after centrifugation. b, Absorption spectra for graphite flakes dispersed in NMP, GBL, DMA and DMEU at concentrations from 2 to 8 µg ml−1. c, Optical absorbance (λex = 660 nm) divided by cell length (A/l) as a function of concentration for graphene in the four solvents NMP, GBL, DMA and DMEU showing Lambert–Beer behaviour with an average absorption coefficient of〈α660〉 = 2,460 L g−1 m−1. The x-axis error bars come from the uncertainty in measuring the mass of graphene/graphite in solution. d, Graphite concentration measured after centrifugation for a range of solvents plotted versus solvent surface tension. The data were converted from absorbance (660 nm) using A/l = 〈α660〉C with 〈α660〉 = 2,460 L g−1m−1. The original concentration, before centrifugation, was 0.1 mg ml−1. The y-axis error bars represent the standard deviation calculated from five measurements. Shown on the right axis is the percentage of material remaining after centrifugation. On the top axis, the surface tension has been transformed into surface energy using a universal value for surface entropy of Ssolsur ≈ 0.1 mJ K−1 m−2. The horizontal arrow shows the approximate range of the reported literature values for the surface energy of graphite39,40,41,42.
图1:石墨分散体的光学特性。
a,石墨薄片在NMP中的分散体,离心后浓度范围为6 µg mL−1 (A)至4 µg mL−1(E)。b,分散在NMP、GBL、DMA和DMEU中浓度为2 - 8 µg mL−1的石墨薄片的吸收光谱。c,光吸光度(λex = 660 nm)除以细胞长度(A/l),作为石墨烯在四种溶剂NMP、GBL、DMA和DMEU中浓度的函数,显示Lambert-Beer行为,平均吸收系数〈α660〉 = 2,460 L g−1 m−1。x轴误差线来自测量溶液中石墨烯/石墨质量的不确定性。d,对一系列溶剂离心后测量的石墨浓度与溶剂表面张力的关系图。数据由吸光度(660 nm)转换而来,使用A/l = 〈α660〉C,〈α660〉 = 2,460 L g−1m−1。离心前的原始浓度为0.1 mg mL-1。y轴误差线代表从五次测量中计算出的标准偏差。右轴显示的是离心后剩余材料的百分比。在顶轴上,表面张力已使用表面熵的普适值Ssolsur ≈ 0.1 mJ K−1 m−2转换为表面能。水平箭头显示了石墨表面能的文献报道值的大致范围。
Figure 2: Electron microscopy of graphite and graphene.
a, SEM image of sieved, pristine graphite (scale bar: 500 µm). b, SEM image of sediment after centrifugation (scale bar: 25 µm). c–e, Bright-field TEM images of monolayer graphene flakes deposited from GBL (c), DMEU (d) and NMP (e), respectively (scale bars: 500 nm). f,g, Bright-field TEM images of a folded graphene sheet and multilayer graphene, both deposited from NMP (scale bars: 500 nm). h, Histogram of the number of visual observations of flakes as a function of the number of monolayers per flake for NMP dispersions.
图2:石墨和石墨烯的电子显微镜。
a,筛分的原始石墨的SEM图像(比例尺:500 µm)。b,离心后沉积物的SEM图像(比例尺:25 µm)。c-e,分别从GBL(c)、DMEU(d)和NMP(e)沉积的单层石墨烯薄片的明场TEM图像(比例尺:500 nm)。f,g,折叠石墨烯片和多层石墨烯的明场TEM图像,两者都是从NMP沉积的(比例尺:500 nm)。h,对于NMP分散体,薄片的视觉观察数量作为每个薄片的单层数量的函数的直方图。
石墨烯剥离的证据
通过将少量的每种分散体滴到多孔碳网格上,可以使用透射电子显微镜(TEM)来研究材料保持分散的状态。至关重要的是,这种技术比以前用于制备用于TEM的石墨烯的技术更简单,后者涉及放置在硅衬底上的石墨烯的欠蚀刻。在本技术中,具有石墨分散体的优点是显而易见的。图2c-g显示了通常观察到的物体的明场TEM图像,这些物体通常分为三类。第一类,如图2c-e所示,包括单层石墨烯。第二,在许多情况下,他们观察到折叠的石墨烯层(图2f)。第三,他们发现双层和多层石墨烯(图2g)。在所有情况下,这些物体的横向尺寸通常只有几微米。在某些情况下,纸张边缘倾向于轻微滚动和折叠(参见补充信息,图S3b)。然而,他们很少观察到厚度超过几层的大型物体。因此,他们认为,在这些样品中,石墨已经被广泛剥离,产生单层和几层石墨烯。通过分析大量的TEM图像,密切注意薄片边缘的均匀性,他们可以产生如图2h所示的薄片厚度统计。根据这些数据,他们可以估计单层石墨烯在NMP分散体中的数量分数(单层数量/观察到的薄片总数)为28%。这相当于溶液相单层质量分数(所有单层的质量/观察到的所有薄片的质量)为∼12 wt%,导致总产率(单层的质量/起始石墨质量)为∼1 wt%(见补充信息,表S2和S2.3节)。事实上,他们还发现沉积物可以回收以产生具有单层石墨烯的数量和质量分数的分散体,他们已经测量到单层石墨烯的数量和质量分数分别为∼18%和7 wt%。这表明沉积物完全回收的可能性和最终产量增加到7-12 wt%(相对于起始石墨质量)。
单层膜的电子衍射识别
Figure 3: Evidence of monolayer graphene from TEM.
a,b, High-resolution TEM images of solution-cast monolayer (a) and bilayer (b) graphene (scale bar 500 nm). c, Electron diffraction pattern of the sheet in a, with the peaks labelled by Miller–Bravais indices. d,e, Electron diffraction patterns taken from the positions of the black (d) and white spots (e), respectively, of the sheet shown in b, using the same labels as in c. The graphene is clearly one layer thick in d and two layers thick in e. f–h, Diffracted intensity taken along the 1–210 to –2110 axis for the patterns shown in c–e, respectively. i, Histogram of the ratios of the intensity of the {1100} and {2110} diffraction peaks for all the diffraction patterns collected. A ratio >1 is a signature of graphene.
图3:来自TEM的单层石墨烯的证据。
a,b,溶液浇铸单层(a)和双层(b)石墨烯的高分辨率TEM图像(比例尺500 nm)。c,a中薄片的电子衍射图案,峰由Miller-Bravais指数标记。d,e,电子衍射图案,分别取自b中所示的薄片的黑色(d)和白色斑点(e)的位置,使用与c中相同的标签。石墨烯在d中明显是一层厚,在e中是两层厚。f-h,分别为c-e中所示图案沿1-210至-2110轴拍摄的衍射强度。i,收集的所有衍射图案的{1100}和{2110}衍射峰的强度比率的直方图。比率>1是石墨烯的标志。
无缺陷石墨烯的证据
Figure 4: Evidence for defect-free graphene.
a, Raman spectra for bulk graphite (1), a vacuum filtered film with the laser spot focused on a large (∼5 µm) flake (2), a vacuum filtered film with the laser spot focused on a small (∼1 µm) flake (3), a large (∼10 µm) bilayer (4). Note that for spectra 2 and 4, the D line is absent, indicating that virtually no defects are present. For the small flake (spectrum 3), a weak D line is apparent, consistent with edge effects. b, A carbon 1s core-level XPS spectrum for a thin film (∼30 nm), vacuum-deposited from a graphene dispersion and dried in a vacuum oven at room temperature. The Shirley background has been subtracted for clarity. Main fit line represents graphitic carbon (C–C). The remainder, ∼286 eV, can be very well fitted considering only residual NMP without the need for any oxide lines. The smaller fit lines represent residual NMP; Cring, carbon in the NMP ring bonded to two hydrogen atoms; C–N, carbon in the NMP molecule bonded to a nitrogen atom; C = O, carbon in the NMP ring double bonded to an oxygen atom. Left inset: enlarged view of the NMP fit lines (combined and individual). Right inset: structure of NMP.
图4:无缺陷石墨烯的证据。
a,块体石墨的拉曼光谱(1),激光光斑聚焦在大(∼5 µm)薄片上的真空过滤膜(2),激光光斑聚焦在小(∼1 µm)薄片上的真空过滤膜(3),大(∼10 µm)双层(4)。注意,对于光谱2和4,D线不存在,表明实际上不存在缺陷。对于小薄片(光谱3),弱D线是明显的,与边缘效应一致。b,薄膜(∼30 nm)的碳1s核心级XPS光谱,从石墨烯分散体真空沉积并在室温下在真空炉中干燥。为了清楚起见,Shirley的背景被去掉了。主拟合线代表石墨碳(C-C)。其余的∼286 eV可以很好地拟合,只考虑剩余的NMP,而不需要任何氧化线。较小的拟合线代表残余NMP;碳环,NMP环中的碳与两个氢原子结合;C-N,NMP分子中的碳与氮原子结合;C=O,NMP环中的碳双键连接到一个氧原子上。左图:NMP拟合线的放大图(组合和单独)。右插图:NMP的结构。
液相剥离的进一步表征
结论
个人简介:
单飞狮
feishishan2022@foxmail.com
撰稿人|单飞狮
审核|单飞狮
编辑|廖成霜