官能团转化新大招:酯基一步直接还原为醚!

文摘   科学   2024-12-11 07:35   四川  
点击上方蓝色文字进行关注
背景介绍
醚是天然分子和合成分子不可分割的一部分,其中许多具有重要的药用特性。醚合成的经典方法包括由醇或酚进行的Williamson 和Ullmann反应。考虑到酯在自然界中的可用性,或在制药和精细化学工业中可通过羧酸和醇缩合容易制备的特点,所以直接通过酯脱氧制备醚是一个极好的过程。然而,优先于羧酸盐去除羰基氧是具有挑战性的。
在我们基础有机合成化学的官能团转化知识体系中,由酯基合成醚往往需要预先将酯基还原为醇,再与烷基卤代物取代而制得,其中烷基卤代物可能不容易获得,亲核取代的官能团兼容性也可能存在问题,所以这并不是一个很好的转化方法。那么是否可以酯基将酯基转化成醚呢?
本期小编就给大家介绍一种由酯基直接一步制备醚的简单方法。BH3-NH3是硼烷−四氢呋喃(BTHF)和硼烷−二甲基硫醚(BMS)的一种类似物,它对空气和湿气都比较稳定,便于操作。
图片来源:Org. Lett.  
底物范围(烷基酯)
甲氧基和硝基的酯2c和2d分别以99%和96%的产率得到醚4c和4d。值得注意的是,甲氧基对TiCl4−BH3-NH3体系具有耐受性。酯基的α位也可以有不同的取代基,包括甲基(2e)、苯基(2f)和溴(2g),都能以86−97%的分离产率得到相应的醚(4e−4g)。3-苯基丙酸乙酯(2j)以定量(99%)产率得到4j。乙酸苄酯(2k)与苄氧基部分的反应以69%的产率提供苄基乙醚(4k)。对称和不对称直链烷基酯2l−2n成功地转化为醚4l−4n,产率为87−99%。由2°-和3°-烷基酸衍生的酯,环己烷羧酸乙酯(2o)和金刚烷-1-羧酸乙酯(2p),都以不错的产率得到醚。远端双键和三键也能完整保留,不饱和醚4q和4r以接近定量的产率(98−99%)获得。但是,(Z)-油酸甲酯(2s)的内部双键被氢化得到了4s,产率为95%。
图片来源:Org. Lett.  
对于芳基酯该条件也是可以顺利发生脱氧的:丁基、5-氯正戊基和苯甲酸异丙酯(2u−2w)均脱氧为相应的醚(4u−4w),产率为75−99%。可以兼容给电子或吸电子基团的取代,并且以82−84%的产率获得相应的醚4x−4ac。芳香二酯邻苯二甲酸二乙酯(2ad)以47%的产率转化为所需的二酯(4ad)。类似地,环状酯邻苯二甲酸酯(2ae)以48%的产率转化为环状醚4ae。含有杂原子的4af和4ag分别以97%和43%的产率得到。在当前的反应条件下,含有腈或酰胺官能团的底物是不相容的。
图片来源:Org. Lett.  
使用BF3-Et2O作为lewis acid时,反应可以直接将酯基还原得到醇。具体条件细节差异可看下方实验操作步骤。
图片来源:Org. Lett.  
实验操作
A 50 mL oven dried round bottom flask was charged with ester (1 mmol, 1 equiv.) and a magnetic stirring bar. The flask was sealed using a rubber septum. After purging the flask with nitrogen, dry diethyl ether (or other solvents) (3 mL) was added, and the solution was cooled at 0 °C with an ice bath. Subsequently, TiCl4 (or other Lewis acids) (2.0 mmol, 2.0 equiv.) was added to the mixture, dropwise via syringe if a liquid or by temporarily removing the septum (under a flow of nitrogen) if a solid. The septum was then carefully opened (under a flow of nitrogen) and borane-ammonia (or other solid borane-amine) (2.5 mmol, 2.5 equiv.) was added slowly to the reaction mixture. Upon complete addition the reaction flask was again sealed with a septum. After stirring at 0 °C for 1 min, the reaction mixture was allowed to warm up to room temperature, stirred and monitored by TLC until completion. On completion of the reaction, the crude mixture was brought to 0 °C and quenched by slow addition of cold 1 M HCl, then transferred to a separatory funnel and extracted with diethyl ether (2 × 3 mL). The combined organic layers were washed with brine (1x 3 mL), dried over anhydrous sodium sulfate, filtered through cotton, and concentrated under aspirator vacuum using a rotary evaporator. Any remaining traces of solvent were removed by subjecting to high vacuum for 30 min. Column chromatography was performed only if necessary to further purify the product using a hexane: ethyl acetate (v/v = 90:10) solvent system to afford the desired product.
A 50 mL oven dried round bottom flask was charged with ester (1 mmol, 1 equiv.) and a magnetic stirring bar. The flask was sealed using a rubber septum. After purging the flask with nitrogen, dry diethyl ether (3 mL) was added, and the solution was cooled at 0 °C with an ice bath. Subsequently, BF3-OEt2 (1.5 mmol, 1.5 equiv.) was added to the mixture, dropwise via syringe. The septum was then carefully opened (under a flow of nitrogen) and ammonia borane (2.5 mmol, 2.5 equiv.) was added slowly to the reaction mixture. Upon complete addition the reaction flask was again sealed with a septum. After stirring at 0 °C for 1 minute, the reaction mixture was allowed to warm up to room temperature, stirred and monitored by TLC until completion. On completion of the reaction, the crude mixture was brought to 0 °C and quenched by slow addition of cold 1 M HCl, then transferred to a separatory funnel and extracted with diethyl ether (2 × 3 mL). The combined organic layers were washed with brine (1 x 3 mL), dried over anhydrous sodium sulfate, filtered through cotton, and concentrated under aspirator vacuum using a rotary evaporator. Any remaining traces of solvent were removed by subjecting to high vacuum for 30 min. Column chromatography was performed only if necessary to further purify the product using a hexane: ethyl acetate (v/v = 90:10) solvent system to afford the desired product。

扫码关注我们

分子实用合成

了解更多合成方法

                                                点了在看的人都很有趣~

点击左下角“阅读原文”,了解更多

分子实用合成
主要范围涉及实用有机合成化学,医药分子合成,反应机理研究,药物化学知识,医药专利分析,追踪医药信息,实验心得和记录等。合作请私信留言!
 最新文章