如何有效去除反应中的三苯基氧磷,简化Appel、Mitsunobu等反应的后处理!

文摘   2024-07-11 10:30   四川  

点击上方蓝色文字进行关注

背景介绍

在制药行业中,副产品的去除可能代表了一个过程中的重要工作,有时还会影响药物成分的化学路线。许多有用的有机转化过程都利用了三苯基膦(TPP)作为还原剂,例如Wittig反应、Appel反应和Mitsunobu反应等。在小规模上,三苯基膦氧化物(TPPO)的传统去除方法通常通过柱色谱法进行。然而,在大规模上去除TPPO的挑战,其中色谱法是不切实际的,限制了这些反应的实施以支持超出临床前研究的API交付。当可能时,可以利用依赖于产品的物理化学性质的各种技术。例如,Mitsunobu反应产生的TPPO可以通过产品的结晶来去除,留下母液中的TPPO,或者通过利用提取程序,其中产品可以在适当的pH调节后被拉入水层,留下有机层中的TPPO。不幸的是,如果产品不是晶体,如果TPPO干扰结晶过程,或者如果产品不能在工作过程中在水层中有利地分配,这些策略就不能使用。

目前,有机反应中TPPO副产品的分离问题主要分为三大类:

1)改进的TPPO去除方法;

2)通过使用具有更容易分离的磷氧化物的替代磷化物来避免TPPO;

(3)通过开发催化量的磷化物反应或根本不需要磷化物的反应来避免化学计量的磷氧化物废物。

本期小编就给大家介绍如何高效除去有机反应混合液中的三苯基膦氧化物,溶剂的选择至关重要,低极性溶剂,如己烷、甲苯、环己烷和二乙醚对TPPO络合物的溶解性差,同时对产物的溶解性也可能较差。而在极性的溶剂(即乙醇、乙酸乙酯、四氢呋喃等)中沉淀 TPPO 的方法,也可能造成产物的损失,尤其是含氮原子较多的产物,在运用该方法除去TPPO时,更应该注意!

方法一:低极性溶剂甲苯/MgCl2
近期,AbbVie科学家报道了使用MgCl2沉淀TPPO的工艺方法MgCl2相比ZnCl2、MgCl2或CaBr2,它更便宜、容易获得,并且无毒。反应是在非/低极性溶剂甲苯中沉淀。
图片来源:Org. Process Res. Dev
实验操作
Mitsunobu Reaction to Product 3. A 250 mL three-necked round-bottom flask with stir bar was charged with (S)-3-(allyloxy)-2-hydroxypropyl 4-methylbenzenesulfonate (5.04 g, 15.7 mmol, 1.05 equiv), 2,6-dichloro-4-(4-chloro6-(4-fluorophenyl)thieno[2,3-d]pyrimidin-5-yl)-3,5-dimethylphenol (6.8 g, 15 mmol, basis charge), TPP (4.52 g, 17.2 mmol, 1.15 equiv), and toluene (68.0 mL, 10 L/kg with respect to basis charge). The slurry was cooled to 0 °C under an atmosphere of nitrogen. Diethyl azodicarboxylate (DEAD) 40 wt % in toluene (7.85 mL, 17.2 mmol, 1.15 equiv) was then added slowly, maintaining the internal temperature below 6 °C. The mixture was a slurry at the beginning (phenol not completely dissolved). After the addition was complete, the reaction mixture was warmed to 20 °C. The slurry thinned out as the reaction proceeded, and the characteristic orange color from DEAD persisted. A fine suspension persisted in the reaction vessel throughout the reaction. The reaction mixture was sampled after 40 min, and only trace amount of phenol remained as evidenced by reverse phase HPLC analysis. The reaction mixture was transferred into a 125 mL Erlenmeyer flask, and the reaction vessel was washed with approximately 20 mL of toluene. MgCl2 (3.28 g, 34.5 mmol, 2.3 equiv) was charged to the Erlenmeyer flask, and an IKA-T10 wet mill was inserted into the flask and started at speed setting #5. After 1 h and 20 min of starting the wet mill, the supernatant was sampled and analyzed by HPLC, showing approximately 20 area % TPPO vs product (210 nm). After 2 h, 10 min of starting the wet mill, the supernatant was sampled again and showed 1.6 area % of TPPO vs product (210 nm). The level of TPPO in the supernatant did not decrease with the additional milling time. The milling was stopped, and the slurry was filtered over Celite. The Erlenmeyer flask and funnel were washed with 35 mL of toluene (5 L/kg vs starting phenol). The wash was repeated with an additional 35 mL of toluene. The combined filtrate and washes were assayed by HPLC against an external standard to 9.32 g of product (86.7% potency-adjusted yield). The toluene solution was transferred into a separatory funnel, and the organic layer was washed twice with 35 mL of 10% NaCl (aq.) (2 × 5 L/kg vs starting phenol) and then with 35 mL of water (5 L/kg vs starting phenol). The organic layer was then concentrated to an approximate volume of 40 mL. Crystallization: The toluene volume was adjusted to a total of 46.6 mL of toluene (5 L of toluene/kg of product). The solution was warmed to 35 °C, and 112 mL of heptane (12 L of heptane/kg of product) was added slowly, over approximately 2 h. Seeding with dried material was performed after a few milliliters of heptane were added, and nucleation was observed shortly after. The mixture was cooled slowly to 20 °C overnight. The supernatant was then sampled and analyzed by HPLC against an external standard; the concentration of the product was determined to be 2.4 mg of product/g of solution. The slurry was filtered over a Buchner funnel, and the cake was washed with a small amount of 30% toluene in heptane. The product was dried under vacuum and isolated as a white to off-white powder (9.1 g, 95 peak area % by HPLC@210 nm, 96% w/w by HPLC against an external standard; TPPO undetected).
方法二:极性溶剂乙醇/ZnCl2
我们先来看看什么溶剂能最好沉淀TPPO(表2)。在每种溶剂中溶解TPPO,并以2:1的ZnCl2与TPPO比例进行沉淀。过滤后,GC分析表明沉淀在从THF到iPrOH的溶剂中进行。EtOAc、PrOAc和iPrOH作为这种方法的优秀溶剂(<5% TPPO),而THF、2MeTHF和甲基乙基酮被容忍(<15% TPPO)。MeOH、MeCN、丙酮和DCM(没有沉淀形成)不允许有效沉淀(>15% TPPO),这可能是由于TPPO/ZnCl2加合物的溶解度增加或ZnCl2的溶剂化增加,从而降低了加合物形成的平衡常数。探索了溶剂混合物,以确定溶剂组合是否可以改善沉淀。只有DCM/iPrOH的组合改善了TPPO的去除。最后,添加过量的EtOH可以帮助沉淀ZnCl2(TPPO)2。
图片来源:J. Org. Chem.
接下来,评估了该方法的功能团兼容性。虽然没有简短的调查可以揭示所有潜在的不兼容性,但我们在一系列具有代表性功能团的小分子存在下进行了几场沉淀。某些功能团将通过使ZnCl2加合物溶解或与TPPO和ZnCl2共沉淀来阻止有效分离。在iPrOH中,带有醇、醛和酰胺功能团的小分子的TPPO去除效率很高(<5% TPPO),仅有轻微的苯甲醛回收率下降(78%)(条目1、3和4)。保护的氨基酸Boc-Gly-OMe(条目9)也被容忍,损失很小。对于通过碱性氮原子与TPPO和ZnCl2共沉淀的底物,得到了不太积极的结果:苯胺、4-甲氧基吡啶和奎宁(条目2、7和10)。一个更拥挤的吡啶,2,6-二甲基哌啶,表现良好(条目8),这与配位假设一致。通过进一步修改条件(溶剂,使用的锌量)可能避免共沉淀,但这没有进一步研究。

图片来源:J. Org. Chem.


反应应用
在大规模(>50克)制备2,7-二溴咔唑的过程中,从4,4′-二溴-2-硝基联苯胺1通过三苯基磷还原环化反应,可以通过在乙醇中的氯化锌沉淀来方便地将三苯基磷从咔唑产品中分离出来(方案1)。这种方法的灵感来自于在铀矿石富集中,使用磷化氧化物选择性提取金属离子。

图片来源:J. Org. Chem.

在合成4的Corey−Fuchs反应中,发现TPPO的沉淀效果很好。粗反应混合物用H2O2洗涤,将任何剩余的磷化物和磷鎓物种转化为TPPO,允许用ZnCl2进行一次沉淀即可有效去除(方案2)。化合物4可以在不需要柱色谱法的情况下以82%的产率获得多克规模。

图片来源:J. Org. Chem.

从L-薄荷醇和5形成6的Mitsunobu反应同样成功(方案3)。粗反应混合物用碳酸氢钠和过氧化物洗涤,以去除过量的酸5,并将任何剩余的TPP氧化为TPPO。简单的溶剂蒸发后,用EtOH稀释并用ZnCl2沉淀(两次)去除了大部分TPPO,并允许产品直接从乙醇溶液中结晶,无需进一步操作;6以68%的产率分离出来,无需通过柱色谱法纯化。

图片来源:J. Org. Chem.

虽然该方法对2,4和6的合成效果很好,但我们确实发现了该方法的几个限制。除了潜在的共沉淀(见上文),我们还发现,在一种情况下,一个酸敏感的β-内酯26在这些路易斯酸性条件下与溶剂反应。此外,使用过量的ZnCl2意味着,在锌污染可能成为问题的情况下,可能需要额外的洗涤或操作(例如,蒸馏,用水提取)。
实验操作

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 4-Nitrobenzoate (6). A 1-L, round-bottom, three-neck flask, equipped with a thermometer, dropping funnel, argon inlet, and magnetic stirrer bar, was charged with l-menthol (6.00 g, 38.4 mmol), TPP (40.1 g, 152.4 mmol), 4-nitrobenzoic acid (25.8 g, 154.4 mmol), and THF (300 mL). While the mixture was stirred under an argon atmosphere, the solution was cooled in an ice bath to 0 °C and diethyl azodicarboxylate (24.2 mL, 154 mmol) was added slowly by addition funnel while maintaining the temperature below 10 °C. Upon completion of the addition, the cooling bath was removed, and the yellow solution was allowed to warm to rt and stir for 18 h. The reaction mixture was warmed to 35−40 °C for 3 h before being transferred to a 2-L separatory funnel and diluted with EtOAc (400 mL). The solution was washed with saturated sodium bicarbonate (2 × 200 mL), 6% hydrogen peroxide (2 × 250 mL), and water (400 mL). The organic layer was isolated and dried over anhydrous sodium sulfate before being filtered and concentrated to dryness by rotary evaporation. The resulting slightly yellow solid was dissolved in 600 mL of ethanol in a 1-L Erlenmeyer flask with gentle warming and stirring. To the stirred solution was added, in a single portion, a warm solution of anhydrous zinc chloride (42.0 g, 310 mmol) in ethanol (200 mL). Stirring was continued while the inner wall of the flask was scratched with a glass rod to initiate the precipitation of the zinc chloride complex of triphenylphosphine oxide. The precipitation was complete after stirring for 1 h at rt, and the mixture was filtered to remove the ZnCl2(TPPO)2. The white solid was rinsed with 50 mL of warm ethanol, and the filtrate was treated with decolorizing carbon (500 mg) before being filtered through a Whatman glass microfiber filter. Analysis (GC with dodecane as an internal standard) showed that 30% of the TPPO had been removed. A second precipitation with ZnCl2 resulted in 85% of the TPPO being removed. The product was recrystallized directly from the second ethanol filtrate as a thick mat of white crystalline needles. The product was isolated by filtration to give 7.9 g (68% yield) of the pure compound (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4-nitrobenzoate. Additional yield could be obtained from concentration of the mother liquor and recrystallization but was not combined with the initial recrystallization due to a slight triphenylphosphine oxide impurity. 1H and 13C NMR matched literature data.

参考文献:https://doi.org/10.1021/acs.oprd.4c00071
                   J. Org. Chem. 2017, 82, 19, 9931–9936

扫码关注我们

分子实用合成

了解更多合成方法

                                                点了在看的人都很有趣~

点击左下角“阅读原文”,了解更多

分子实用合成
主要范围涉及实用有机合成化学,医药分子合成,反应机理研究,药物化学知识,医药专利分析,追踪医药信息,实验心得和记录等。合作请私信留言!
 最新文章