韩国嘉泉大学Daeho Lee等 | 基于共轭聚合物的可穿戴柔性生物传感器和人体健康监测系统的设计和制造进展

文摘   2024-08-28 18:15   浙江  

内容简介


本综述论文聚焦基于共轭聚合物的可穿戴柔性生物传感器和人体健康监测系统的设计和制造进展。可穿戴生物传感器作为对患者友好的诊断技术,因其高柔性和舒适性,受到了极大的关注。在可穿戴生物传感器设计中,新型材料的不断研究和应用加速了医疗保健中床旁检测平台和植入式生物医学设备的发展。在众多潜在材料中,共轭聚合物(CPs)因其出色的导电性和机械性能,正在成为构建高性能可穿戴生物传感器的理想选择。最近,CPs已被广泛集成到各种可穿戴生物传感器中,以监测一系列目标生物分子。然而,为实际应用制造可靠的基于CP的可穿戴生物传感器仍然是一个重大挑战,需要新的发展策略来增强这类生物传感器的可行性。因此,本综述旨在通过总结和评估近期基于CP的可穿戴生物传感器设计和制造的研究,提供综合的科学证据,以推动未来的研究工作。本综述强调了CPs的卓越性能和优势,并旨在明确它们在该领域的潜在应用前景。此外,本文详细讨论了基于CP的可穿戴生物传感器的基本原理、主要组成部分及其传感机制。强调了CP纳米结构和杂化在提高传感性能方面的最新进展,以及下一代可穿戴生物传感器的最新创新。我们相信,基于CP的可穿戴生物传感器一直是并将继续是开发有效且用户友好的人类健康监测诊断技术的理想平台。


引用本文(点击最下方阅读原文可下载PDF)

Tran VV, Phung VD, Lee D, 2024. Recent advances and innovations in the design and fabrication of wearable flexible biosensors and human health monitoring systems based on conjugated polymers. Bio-des Manuf 7(4):476–516. https://doi.org/10.1007/s42242-024-00297-z

文章导读



图1 图片摘要


图2 液相加工性能


图3 纳米多孔共轭聚合物结构


图4 自供电智能电子皮肤生物传感器

参考文献

上下滑动以阅览

1. Gao W, Ota H, Kiriya D et al (2019) Flexible electronics toward wearable sensing. Acc Chem Res 52(3):523–533. https://doi.org/10.1021/acs.accounts.8b00500

2. Guo X, Li JA, Wang FY et al (2022) Application of conductive polymer hydrogels in flexible electronics. J Polym Sci 60(18):2635–2662. https://doi.org/10.1002/pol.20210933

3. Solanki PR, Kaushik A, Agrawal VV et al (2011) Nanostructured metal oxide-based biosensors. NPG Asia Mater 3(1):17–24. https://doi.org/10.1038/asiamat.2010.137

4. Xu SD, Shi XL, Dargusch M et al (2021) Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications. Prog Mater Sci 121:100840. https://doi.org/10.1016/j.pmatsci.2021.100840

5. Nezakati T, Seifalian A, Tan A et al (2018) Conductive polymers: opportunities and challenges in biomedical applications. Chem Rev 118(14):6766–6843. https://doi.org/10.1021/acs.chemrev.6b00275

6. Zhao GX, Zhou HW, Jin GR et al (2022) Rational design of electrically conductive biomaterials toward excitable tissues regeneration. Prog Polym Sci 131:101573. https://doi.org/10.1016/j.progpolymsci.2022.101573

7. Jiang H, Taranekar P, Reynolds JR et al (2009) Conjugated polyelectrolytes: synthesis, photophysics, and applications. Angew Chem Int Ed 48(24):4300–4316. https://doi.org/10.1002/anie.200805456

8. Wu WB, Bazan GC, Liu B (2017) Conjugated-polymer-amplified sensing, imaging, and therapy. Chem 2(6):760–790. https://doi.org/10.1016/j.chempr.2017.05.002

9. Swager TM (2017) 50th anniversary perspective: conducting/semiconducting conjugated polymers. A personal perspective on the past and the future. Macromolecules 50(13):4867–4886. https://doi.org/10.1021/acs.macromol.7b00582

10. Jeong G, Cheon HJ, Shin SY et al (2023) Improved NO2 gas sensing performance of nanoporous conjugated polymer (CP) thin films by incorporating preformed CP nanowires. Dyes Pigm 214:111235. https://doi.org/10.1016/j.dyepig.2023.111235

11. Duan JJ, Liang XC, Guo JH et al (2016) Ultra-stretchable and force-sensitive hydrogels reinforced with chitosan microspheres embedded in polymer networks. Adv Mater 28(36):8037–8044. https://doi.org/10.1002/adma.201602126

12. Tran VV, Lee S, Lee D et al (2022) Recent developments and implementations of conductive polymer-based flexible devices in sensing applications. Polymers 14(18):3730. https://doi.org/10.3390/polym14183730

13. Anantha-Iyengar G, Shanmugasundaram K, Nallal M et al (2019) Functionalized conjugated polymers for sensing and molecular imprinting applications. Prog Polym Sci 88:1–129. https://doi.org/10.1016/j.progpolymsci.2018.08.001

14. Tran VV, Tran NHT, Hwang HS et al (2021) Development strategies of conducting polymer-based electrochemical biosensors for virus biomarkers: potential for rapid COVID-19 detection. Biosens Bioelectron 182:113192. https://doi.org/10.1016/j.bios.2021.113192

15. Gerard M, Chaubey A, Malhotra BD (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17(5):345–359. https://doi.org/10.1016/S0956-5663(01)00312-8

16. Nguyen TN, Phung VD, Tran VV (2023) Recent advances in conjugated polymer-based biosensors for virus detection. Biosensors 13(6):586. https://doi.org/10.3390/bios13060586

17. Qian XM, Städler B (2019) Recent developments in polydiacetylene-based sensors. Chem Mater 31(4):1196–1222. https://doi.org/10.1021/acs.chemmater.8b05185

18. Lee K, Povlich LK, Kim J (2010) Recent advances in fluorescent and colorimetric conjugated polymer-based biosensors. Analyst 135(9):2179–2189. https://doi.org/10.1039/c0an00239a

19. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10(6):2341–2353. https://doi.org/10.1016/j.actbio.2014.02.015

20. Gamboa J, Paulo-Mirasol S, Estrany F et al (2023) Recent progress in biomedical sensors based on conducting polymer hydrogels. ACS Appl Bio Mater 6(5):1720–1741. https://doi.org/10.1021/acsabm.3c00139

21. Ravichandran R, Sundarrajan S, Venugopal JR et al (2010) Applications of conducting polymers and their issues in biomedical engineering. J R Soc Interface 7(5):S559–S579. https://doi.org/10.1098/rsif.2010.0120.focus

22. Gao YJ, Yu LT, Yeo JC et al (2020) Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv Mater 32(15):e1902133. https://doi.org/10.1002/adma.201902133

23. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M et al (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 5(4):e17–e35. https://doi.org/10.1002/term.383

24. Green R, Abidian MR (2015) Conducting polymers for neural prosthetic and neural interface applications. Adv Mater 27(46):7620–7637. https://doi.org/10.1002/adma.201501810

25. Mokhtar SMA, Alvarez de Eulate E, Yamada M et al (2021) Conducting polymers in wearable devices. Med Devices Sens 4(1):e10160. https://doi.org/10.1002/mds3.10160

26. Namsheer K, Rout CS (2021) Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv 11(10):5659–5697. https://doi.org/10.1039/d0ra07800j

27. Cao XX, Zhao KF, Chen L et al (2019) Conjugated polymer single crystals and nanowires. Polym Cryst 2(3):e10064. https://doi.org/10.1002/pcr2.10064

28. Tatum WK, Luscombe CK (2018) π-Conjugated polymer nanowires: advances and perspectives toward effective commercial implementation. Polym J 50(8):659–669. https://doi.org/10.1038/s41428-018-0062-6

29. Long YZ, Li MM, Gu CZ et al (2011) Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci 36(10):1415–1442. https://doi.org/10.1016/j.progpolymsci.2011.04.001

30. Diao Y, Shaw L, Bao ZN et al (2014) Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ Sci 7(7):2145–2159. https://doi.org/10.1039/c4ee00688g

31. Gu XD, Shaw L, Gu K et al (2018) The meniscus-guided deposition of semiconducting polymers. Nat Commun 9(1):534. https://doi.org/10.1038/s41467-018-02833-9

32. Li Y, Zhou X, Sarkar B et al (2022) Recent progress on self-healable conducting polymers. Adv Mater 34(24):e2108932. https://doi.org/10.1002/adma.202108932

33. Ates HC, Nguyen PQ, Gonzalez-Macia L et al (2022) End-to-end design of wearable sensors. Nat Rev Mater 7(11):887–907. https://doi.org/10.1038/s41578-022-00460-x

34. Zhu PC, Peng HM, Rwei AY (2022) Flexible, wearable biosensors for digital health. Med Nov Technol Device 14:100118. https://doi.org/10.1016/j.medntd.2022.100118

35. Müllen K, Scherf U (2023) Conjugated polymers: where we come from, where we stand, and where we might go. Macromol Chem Phys 224(3):2200337. https://doi.org/10.1002/macp.202200337

36. Lan YK, Huang CI (2009) Charge mobility and transport behavior in the ordered and disordered states of the regioregular poly(3-hexylthiophene). J Phys Chem B 113(44):14555–14564. https://doi.org/10.1021/jp904841j

37. Gu KC, Snyder CR, Onorato J et al (2018) Assessing the Huang–Brown description of tie chains for charge transport in conjugated polymers. ACS Macro Lett 7(11):1333–1338. https://doi.org/10.1021/acsmacrolett.8b00626

38. Kim M, Ryu SU, Park SA et al (2020) Donor–acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report. Adv Funct Mater 30(20):1904545. https://doi.org/10.1002/adfm.201904545

39. Xu CR, Dong J, He CZ et al (2023) Precise control of conjugated polymer synthesis from step-growth polymerization to iterative synthesis. Giant 14:100154. https://doi.org/10.1016/j.giant.2023.100154

40. Huynh TP, Sharma PS, Sosnowska M et al (2015) Functionalized polythiophenes: recognition materials for chemosensors and biosensors of superior sensitivity, selectivity, and detectability. Prog Polym Sci 47:1–25. https://doi.org/10.1016/j.progpolymsci.2015.04.009

41. Wolf CM, Guio L, Scheiwiller S et al (2021) Strategies for the development of conjugated polymer molecular dynamics force fields validated with neutron and X-ray scattering. ACS Polym Au 1(3):134–152. https://doi.org/10.1021/acspolymersau.1c00027

42. Palani P, Karpagam S (2021) Conjugated polymers – a versatile platform for various photophysical, electrochemical and biomedical applications: a comprehensive review. New J Chem 45(41):19182–19209. https://doi.org/10.1039/d1nj04062f

43. Kim DH, Richardson-Burns SM, Hendricks JL et al (2007) Effect of immobilized nerve growth factor on conductive polymers: electrical properties and cellular response. Adv Funct Mater 17(1):79–86. https://doi.org/10.1002/adfm.200500594

44. Wong JY, Langer R, Ingber DE (1994) Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells. Proc Natl Acad Sci USA 91(8):3201–3204. https://doi.org/10.1073/pnas.91.8.3201

45. Kar P (2013) Role of dopant on the conduction of conjugated polymer. In: Kar P (Ed.), Doping in Conjugated Polymers. Wiley, USA, p.63–79. https://doi.org/10.1002/9781118816639.ch4

46. Bredas JL, Street GB (1985) Polarons, bipolarons, and solitons in conducting polymers. Acc Chem Res 18(10):309–315. https://doi.org/10.1021/ar00118a005

47. Gharahcheshmeh MH, Gleason KK (2020) Texture and nanostructural engineering of conjugated conducting and semiconducting polymers. Mater Today Adv 8:100086. https://doi.org/10.1016/j.mtadv.2020.100086

48. Fielding LA, Hillier JK, Burchell MJ et al (2015) Space science applications for conducting polymer particles: synthetic mimics for cosmic dust and micrometeorites. Chem Comm 51(95):16886–16899. https://doi.org/10.1039/c5cc07405c

49. Cho B, Park KS, Baek J et al (2014) Single-crystal poly(3,4-ethylenedioxythiophene) nanowires with ultrahigh conductivity. Nano Lett 14(6):3321–3327. https://doi.org/10.1021/nl500748y

50. Cao G, Cai SY, Zhang H et al (2022) High-performance conductive polymer composites by incorporation of polyaniline-wrapped halloysite nanotubes and silver microflakes. ACS Appl Polym Mater 4(5):3352–3360. https://doi.org/10.1021/acsapm.1c01929

51. Yang J, Liu Y, Liu SL et al (2017) Conducting polymer composites: material synthesis and applications in electrochemical capacitive energy storage. Mater Chem Front 1(2):251–268. https://doi.org/10.1039/c6qm00150e

52. Larese FF, D’Agostin F, Crosera M et al (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255(1):33–37. https://doi.org/10.1016/j.tox.2008.09.025

53. Tropp J, Rivnay J (2021) Design of biodegradable and biocompatible conjugated polymers for bioelectronics. J Mater Chem C 9(39):13543–13556. https://doi.org/10.1039/d1tc03600a

54. Arteshi Y, Aghanejad A, Davaran S et al (2018) Biocompatible and electroconductive polyaniline-based biomaterials for electrical stimulation. Eur Polym J 108:150–170. https://doi.org/10.1016/j.eurpolymj.2018.08.036

55. Bidez PR, Li SX, MacDiarmid AG et al (2006) Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J Biomater Sci Polym Ed 17(1–2):199–212. https://doi.org/10.1163/156856206774879180

56. Cui XY, Lee VA, Raphael Y et al (2001) Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J Biomed Mater Res 56(2):261–272. https://doi.org/10.1002/1097-4636(200108)56:2%3c261::AID-JBM1094%3e3.0.CO;2-I

57. Yslas EI, Cavallo P, Acevedo DF et al (2015) Cysteine modified polyaniline films improve biocompatibility for two cell lines. Mater Sci Eng C 51:51–56. https://doi.org/10.1016/j.msec.2015.02.049

58. Zhu YD, Chen SP, Zhao H et al (2016) PPy@MIL-100 nanoparticles as a pH- and near-IR-irradiation-responsive drug carrier for simultaneous photothermal therapy and chemotherapy of cancer cells. ACS Appl Mater Interfaces 8(50):34209–34217. https://doi.org/10.1021/acsami.6b11378

59. Humpolíček P, Kašpárková V, Pacherník J et al (2018) The biocompatibility of polyaniline and polypyrrole: a comparative study of their cytotoxicity, embryotoxicity and impurity profile. Mater Sci Eng C 91:303–310. https://doi.org/10.1016/j.msec.2018.05.037

60. Ramanaviciene A, Kausaite A, Tautkus S et al (2010) Biocompatibility of polypyrrole particles: an in-vivo study in mice. J Pharm Pharmacol 59(2):311–315. https://doi.org/10.1211/jpp.59.2.0017

61. Lakard B, Ploux L, Anselme K et al (2009) Effect of ultrasounds on the electrochemical synthesis of polypyrrole, application to the adhesion and growth of biological cells. Bioelectrochemistry 75(2):148–157. https://doi.org/10.1016/j.bioelechem.2009.03.010

62. Wang ZX, Roberge C, Wan Y et al (2003) A biodegradable electrical bioconductor made of polypyrrole nanoparticle/poly(D, L-lactide) composite: a preliminary in vitro biostability study. J Biomed Mater Res A 66A(4):738–746. https://doi.org/10.1002/jbm.a.10037

63. George PM, Lyckman AW, LaVan DA et al (2005) Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 26(17):3511–3519. https://doi.org/10.1016/j.biomaterials.2004.09.037

64. Richardson RT, Thompson B, Moulton S et al (2007) The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite outgrowth from auditory neurons. Biomaterials 28(3):513–523. https://doi.org/10.1016/j.biomaterials.2006.09.008

65. Castano H, O’Rear EA, McFetridge PS et al (2004) Polypyrrole thin films formed by admicellar polymerization support the osteogenic differentiation of mesenchymal stem cells. Macromol Biosci 4(8):785–794. https://doi.org/10.1002/mabi.200300123

66. Huang LH, Hu J, Lang L et al (2007) Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer. Biomaterials 28(10):1741–1751. https://doi.org/10.1016/j.biomaterials.2006.12.007

67. Fahlgren A, Bratengeier C, Gelmi A et al (2015) Biocompatibility of polypyrrole with human primary osteoblasts and the effect of dopants. PLoS ONE 10:e0134023. https://doi.org/10.1371/journal.pone.0134023

68. Humpolicek P, Kasparkova V, Saha P et al (2012) Biocompatibility of polyaniline. Synth Met 162(7–8):722–727. https://doi.org/10.1016/j.synthmet.2012.02.024

69. Yan XB, Chen JT, Yang J et al (2010) Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide−polyaniline and graphene−polyaniline hybrid papers. ACS Appl Mater Interfaces 2(9):2521–2529. https://doi.org/10.1021/am100293r

70. Ali A, Chowdhury S, Carr MA et al (2023) Antibacterial and biocompatible polyaniline-doped titanium oxide layers. J Biomed Mater Res B Appl Biomater 111(5):1100–1111. https://doi.org/10.1002/jbm.b.35217

71. Gao HN, Zhang JH, Liu FY et al (2014) Fabrication of polyaniline nanofiber arrays on poly(etheretherketone) to induce enhanced biocompatibility and controlled behaviours of mesenchymal stem cells. J Mater Chem B 2(41):7192–7200. https://doi.org/10.1039/c4tb01081g

72. Zeglio E, Rutz AL, Winkler TE et al (2019) Conjugated polymers for assessing and controlling biological functions. Adv Mater 31(22):e1806712. https://doi.org/10.1002/adma.201806712

73. He H, Zhang L, Guan X et al (2019) Biocompatible conductive polymers with high conductivity and high stretchability. ACS Appl Mater Interfaces 11(29):26185–26193. https://doi.org/10.1021/acsami.9b07325

74. Ren XN, Yang M, Yang TT et al (2021) Highly conductive PPy–PEDOT:PSS hybrid hydrogel with superior biocompatibility for bioelectronics application. ACS Appl Mater Interfaces 13(21):25374–25382. https://doi.org/10.1021/acsami.1c04432

75. Liang YY, Offenhäusser A, Ingebrandt S et al (2021) PEDOT:PSS-based bioelectronic devices for recording and modulation of electrophysiological and biochemical cell signals. Adv Healthc Mater 10(11):2100061. https://doi.org/10.1002/adhm.202100061

76. Lehane RA, Gamero-Quijano A, Malijauskaite S et al (2022) Electrosynthesis of biocompatible free-standing PEDOT thin films at a polarized liquid|liquid interface. J Am Chem Soc 144(11):4853–4862. https://doi.org/10.1021/jacs.1c12373

77. Irimia-Vladu M (2014) “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem Soc Rev 43(2):588–610. https://doi.org/10.1039/c3cs60235d

78. Wang CY, Yokota T, Someya T (2021) Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem Rev 121(4):2109–2146. https://doi.org/10.1021/acs.chemrev.0c00897

79. Han JW, Wibowo AF, Park J et al (2022) Highly stretchable, robust, and conductive lab-synthesized PEDOT:PSS conductive polymer/hydroxyethyl cellulose films for on-skin health-monitoring devices. Org Electron 105:106499. https://doi.org/10.1016/j.orgel.2022.106499

80. Xu DF, Fan L, Gao LF et al (2016) Micro-nanostructured polyaniline assembled in cellulose matrix via interfacial polymerization for applications in nerve regeneration. ACS Appl Mater Interfaces 8(27):17090–17097. https://doi.org/10.1021/acsami.6b03555

81. Wang SP, Guan S, Zhu ZB et al (2017) Hyaluronic acid doped-poly(3,4-ethylenedioxythiophene)/chitosan/gelatin (PEDOT-HA/Cs/Gel) porous conductive scaffold for nerve regeneration. Mater Sci Eng C 71:308–316. https://doi.org/10.1016/j.msec.2016.10.029

82. Huang L, Yang XQ, Deng LL et al (2021) Biocompatible chitin hydrogel incorporated with PEDOT nanoparticles for peripheral nerve repair. ACS Appl Mater Interfaces 13(14):16106–16117. https://doi.org/10.1021/acsami.1c01904

83. Tee BCK, Wang C, Allen R et al (2012) An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nano-technol 7(12):825–832. https://doi.org/10.1038/nnano.2012.192

84. Xu BX, Akhtar A, Liu YH et al (2016) An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Adv Mater 28(22):4462–4471. https://doi.org/10.1002/adma.201504155

85. Zhang ZT, Liao M, Lou HQ et al (2018) Conjugated polymers for flexible energy harvesting and storage. Adv Mater 30(13):1704261. https://doi.org/10.1002/adma.201704261

86. Rodriquez D, Kim JH, Root SE et al (2017) Comparison of methods for determining the mechanical properties of semiconducting polymer films for stretchable electronics. ACS Appl Mater Interfaces 9(10):8855–8862. https://doi.org/10.1021/acsami.6b16115

87. Alkhadra MA, Root SE, Hilby KM et al (2017) Quantifying the fracture behavior of brittle and ductile thin films of semiconducting polymers. Chem Mater 29(23):10139–10149. https://doi.org/10.1021/acs.chemmater.7b03922

88. Sugiyama F, Kleinschmidt AT, Kayser LV et al (2018) Effects of flexibility and branching of side chains on the mechanical properties of low-bandgap conjugated polymers. Polym Chem 9(33):4354–4363. https://doi.org/10.1039/c8py00820e

89. Choudhary K, Chen AX, Pitch GM et al (2021) Comparison of the mechanical properties of a conjugated polymer deposited using spin coating, interfacial spreading, solution shearing, and spray coating. ACS Appl Mater Interfaces 13(43):51436–51446. https://doi.org/10.1021/acsami.1c13043

90. He H, Chen R, Yue SZ et al (2022) Salt-induced ductilization and strain-insensitive resistance of an intrinsically conducting polymer. Sci Adv 8(47):eabq8160. https://doi.org/10.1126/sciadv.abq8160

91. Seyedin MZ, Razal JM, Innis PC et al (2014) Strain-responsive polyurethane/PEDOT:PSS elastomeric composite fibers with high electrical conductivity. Adv Funct Mater 24(20):2957–2966. https://doi.org/10.1002/adfm.201303905

92. Li PC, Sun K, Ouyang JY (2015) Stretchable and conductive polymer films prepared by solution blending. ACS Appl Mater Interfaces 7(33):18415–18423. https://doi.org/10.1021/acsami.5b04492

93. Chen JS, Liu JF, Thundat T et al (2019) Polypyrrole-doped conductive supramolecular elastomer with stretchability, rapid self-healing, and adhesive property for flexible electronic sensors. ACS Appl Mater Interfaces 11(20):18720–18729. https://doi.org/10.1021/acsami.9b03346

94. Oh JY, Kim S, Baik HK et al (2016) Conducting polymer dough for deformable electronics. Adv Mater 28(22):4455–4461. https://doi.org/10.1002/adma.201502947

95. Savagatrup S, Chan E, Renteria-Garcia SM et al (2015) Plasticization of PEDOT:PSS by common additives for mechanically robust organic solar cells and wearable sensors. Adv Funct Mater 25(3):427–436. https://doi.org/10.1002/adfm.201401758

96. Wang Y, Zhu CX, Pfattner R et al (2017) A highly stretchable, transparent, and conductive polymer. Sci Adv 3(3):e1602076. https://doi.org/10.1126/sciadv.1602076

97. Lee Y, Zhou HY, Lee TW (2018) One-dimensional conjugated polymer nanomaterials for flexible and stretchable electronics. J Mater Chem C 6(14):3538–3550. https://doi.org/10.1039/c7tc05927b

98. Li XQ, Ding CS, Li XM et al (2020) Electronic biopolymers: from molecular engineering to functional devices. Chem Eng J 397:125499. https://doi.org/10.1016/j.cej.2020.125499

99. Helgesen M, Carlé JE, Krebs FC (2013) Slot-die coating of a high performance copolymer in a readily scalable roll process for polymer solar cells. Adv Energy Mater 3(12):1664–1669. https://doi.org/10.1002/aenm.201300324

100. Xu BW, Hou JH (2018) Solution-processable conjugated polymers as anode interfacial layer materials for organic solar cells. Adv Energy Mater 8(20):1800022. https://doi.org/10.1002/aenm.201800022

101. Chen SW, Zhu SY, Lin ZQ et al (2022) Transforming polymorphs via meniscus-assisted solution-shearing conjugated polymers for organic field-effect transistors. ACS Nano 16(7):11194–11203. https://doi.org/10.1021/acsnano.2c04049

102. Deng W, Zhang XJ, Huang LM et al (2016) Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv Mater 28(11):2201–2208. https://doi.org/10.1002/adma.201505126

103. Tran VV, Jeong G, Kim KS et al (2022) Facile strategy for modulating the nanoporous structure of ultrathin π-conjugated polymer films for high-performance gas sensors. ACS Sens 7(1):175–185. https://doi.org/10.1021/acssensors.1c01942

104. Lu ZJ, Wang CQ, Deng W et al (2020) Meniscus-guided coating of organic crystalline thin films for high-performance organic field-effect transistors. J Mater Chem C 8(27):9133–9146. https://doi.org/10.1039/D0TC01887B

105. Kim YJ, Lee S, Niazi MR et al (2020) Systematic study on the morphological development of blade-coated conjugated polymer thin films via in situ measurements. ACS Appl Mater Interfaces 12(32):36417–36427. https://doi.org/10.1021/acsami.0c07385

106. Park KS, Kwok JJ, Dilmurat R et al (2019) Tuning conformation, assembly, and charge transport properties of conjugated polymers by printing flow. Sci Adv 5(8):eaaw7757. https://doi.org/10.1126/sciadv.aaw7757

107. Chen M, Peng BY, Huang SY et al (2020) Understanding the meniscus-guided coating parameters in organic field-effect-transistor fabrications. Adv Funct Mater 30(1):1905963. https://doi.org/10.1002/adfm.201905963

108. Richard M, Al-Ajaji A, Ren SW et al (2020) Large-scale patterning of π-conjugated materials by meniscus guided coating methods. Adv Colloid Interface Sci 275:102080. https://doi.org/10.1016/j.cis.2019.102080

109. Zub K, Hoeppener S, Schubert US (2022) Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv Mater 34(31):e2105015. https://doi.org/10.1002/adma.202105015

110. Lo LW, Zhao JY, Wan HC et al (2021) An inkjet-printed PEDOT:PSS-based stretchable conductor for wearable health monitoring device applications. ACS Appl Mater Interfaces 13(18):21693–21702. https://doi.org/10.1021/acsami.1c00537

111. Carey T, Jones C, Le Moal F et al (2018) Spray-coating thin films on three-dimensional surfaces for a semitransparent capacitive-touch device. ACS Appl Mater Interfaces 10(23):19948–19956. https://doi.org/10.1021/acsami.8b02784

112. Khim D, Baeg KJ, Yu BK et al (2013) Spray-printed organic field-effect transistors and complementary inverters. J Mater Chem C 1(7):1500–1506. https://doi.org/10.1039/c2tc00085g

113. Say MG, Brett CJ, Edberg J et al (2022) Scalable paper supercapacitors for printed wearable electronics. ACS Appl Mater Interfaces 14(50):55850–55863. https://doi.org/10.1021/acsami.2c15514

114. Xiong ZY, Yun XW, Qiu L et al (2019) A dynamic graphene oxide network enables spray printing of colloidal gels for high-performance micro-supercapacitors. Adv Mater 31(16):1804434. https://doi.org/10.1002/adma.201804434

115. Dhanabalan SS, Sriram S, Walia S et al (2021) Wearable label-free optical biodetectors: progress and perspectives. Adv Photon Res 2(2):2000076. https://doi.org/10.1002/adpr.202000076

116. Reppy MA, Pindzola BA (2007) Biosensing with polydiacetylene materials: structures, optical properties and applications. Chem Commun 42:4317–4338. https://doi.org/10.1039/b703691d

117. Bourke S, Donà F, Teijeiro Gonzalez Y et al (2022) Biocompatible magnetic conjugated polymer nanoparticles for optical and lifetime imaging applications in the first biological window. ACS Appl Mater Interfaces 4(11):8193–8202. https://doi.org/10.1021/acsapm.2c01153

118. Burroughes JH, Bradley DDC, Brown AR et al (1990) Light-emitting diodes based on conjugated polymers. Nature 347(6293):539–541. https://doi.org/10.1038/347539a0

119. Chen X, Hong L, You X et al (2009) Photo-controlled molecular recognition of α-cyclodextrin with azobenzene containing polydiacetylene vesicles. Chem Commun 11:1356–1358. https://doi.org/10.1039/b820894h

120. Kew SJ, Hall EAH (2006) pH response of carboxy-terminated colorimetric polydiacetylene vesicles. Anal Chem 78(7):2231–2238. https://doi.org/10.1021/ac0517794

121. Lee J, Kim HJ, Kim J (2008) Polydiacetylene liposome arrays for selective potassium detection. J Am Chem Soc 130(15):5010–5011. https://doi.org/10.1021/ja709996c

122. Huo JP, Deng QJ, Fan T et al (2017) Advances in polydiacetylene development for the design of side chain groups in smart material applications—a mini review. Polym Chem 8(48):7438–7445. https://doi.org/10.1039/c7py01396e

123. Jelinek R, Ritenberg M (2013) Polydiacetylenes—recent molecular advances and applications. RSC Adv 3(44):21192–21201. https://doi.org/10.1039/c3ra42639d

124. Takeuchi M, Imai H, Oaki Y (2017) Effects of the intercalation rate on the layered crystal structures and stimuli-responsive color-change properties of polydiacetylene. J Mater Chem C 5(32):8250–8255. https://doi.org/10.1039/c7tc02218b

125. Tran VV (2022) Conjugated polymers-based biosensors for virus detection: lessons from COVID-19. Biosensors 12(9):748. https://doi.org/10.3390/bios12090748

126. Xie RX, Colby RH, Gomez ED (2018) Connecting the mechanical and conductive properties of conjugated polymers. Adv Electron Mater 4(10):1700356. https://doi.org/10.1002/aelm.201700356

127. Ding ZC, Liu DL, Zhao K et al (2021) Optimizing morphology to trade off charge transport and mechanical properties of stretchable conjugated polymer films. Macromolecules 54(9):3907–3926. https://doi.org/10.1021/acs.macromol.1c00268

128. Marina S, Gutierrez-Fernandez E, Gutierrez J et al (2022) Semi-paracrystallinity in semi-conducting polymers. Mater Horiz 9(4):1196–1206. https://doi.org/10.1039/d1mh01349a

129. Le TH, Yoon H (2021) Fundamentals of conjugated polymer nanostructures. In: Ghosh S (Ed.), Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications. WILEY‐VCH GmbH, Germany, p. 1–42. https://doi.org/10.1002/9783527820115.ch1

130. Zhang L, Zhao KF, Li HX et al (2019) Liquid crystal ordering on conjugated polymers film morphology for high performance. J Polym Sci B Polym Phys 57(23):1572–1591. https://doi.org/10.1002/polb.24885

131. Park HW, Kim T, Huh J et al (2012) Anisotropic growth control of polyaniline nanostructures and their morphology-dependent electrochemical characteristics. ACS Nano 6(9):7624–7633. https://doi.org/10.1021/nn3033425

132. Dong HL, Hu WP (2016) Multilevel investigation of charge transport in conjugated polymers. Acc Chem Res 49(11):2435–2443. https://doi.org/10.1021/acs.accounts.6b00368

133. Tseng HR, Phan H, Luo C et al (2014) High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv Mater 26(19):2993–2998. https://doi.org/10.1002/adma.201305084

134. Kim JH, Lee DH, Yang DS et al (2013) Novel polymer nanowire crystals of diketopyrrolopyrrole-based copolymer with excellent charge transport properties. Adv Mater 25(30):4102–4106. https://doi.org/10.1002/adma.201301536

135. Kwon OS, Hong TJ, Kim SK et al (2010) Hsp90-functionalized polypyrrole nanotube FET sensor for anti-cancer agent detection. Biosens Bioelectron 25(6):1307–1312. https://doi.org/10.1016/j.bios.2009.10.019

136. Chen L, Zhao KF, Cao XX et al (2018) Nanowires of conjugated polymer prepared by tuning the interaction between the solvent and polymer. Polymer 149:23–29. https://doi.org/10.1016/j.polymer.2018.06.068

137. Liu Y, Wu F (2023) Synthesis and application of polypyrrole nanofibers: a review. Nanoscale Adv 5(14):3606–3618. https://doi.org/10.1039/d3na00138e

138. Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8(1):64–75. https://doi.org/10.1016/S1359-0294(03)00004-9

139. Hu F, Yan B, Sun G et al (2019) Conductive polymer nano-tubes for electrochromic applications. ACS Appl Nano Mater 2(5):3154–3160. https://doi.org/10.1021/acsanm.9b00472

140. Liu S, Ma YH, Zhang RQ et al (2016) Three-dimensional nanoporous conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) decorated with copper nanoparticles: electrochemical preparation and enhanced nonenzymatic glucose sensing. ChemElectroChem 3(11):1799–1804. https://doi.org/10.1002/celc.201600439

141. Ma YH, Liu NZ, Xu ZY et al (2021) An ultrasensitive biosensor based on three-dimensional nanoporous conducting polymer decorated with gold nanoparticles for microRNA detection. Microchem J 161:105780. https://doi.org/10.1016/j.microc.2020.105780

142. Sasaki M, Goto M (2021) A conductive polymer nanowire including functional quantum dots generated via pulsed laser irradiation for high-sensitivity sensor applications. Sci Rep 11(1):11203. https://doi.org/10.1038/s41598-021-90460-8

143. Son SY, Kim Y, Lee J et al (2016) High-field-effect mobility of low-crystallinity conjugated polymers with localized aggregates. J Am Chem Soc 138(26):8096–8103. https://doi.org/10.1021/jacs.6b01046

144. Noriega R, Rivnay J, Vandewal K et al (2013) A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat Mater 12(11):1038–1044. https://doi.org/10.1038/nmat3722

145. Lee MY, Hong J, Lee EK et al (2016) Highly flexible organic nanofiber phototransistors fabricated on a textile composite for wearable photosensors. Adv Funct Mater 26(9):1445–1453. https://doi.org/10.1002/adfm.201503230

146. Hwang SK, Min SY, Bae I et al (2014) Non-volatile ferroelectric memory with position-addressable polymer semiconducting nanowire. Small 10(10):1976–1984. https://doi.org/10.1002/smll.201303814

147. Min SY, Kim TS, Lee Y et al (2015) Organic nanowire fabrication and device applications. Small 11(1):45–62. https://doi.org/10.1002/smll.201401487

148. Lee Y, Oh JY, Kim TR et al (2018) Deformable organic nanowire field-effect transistors. Adv Mater 30(7):1704401. https://doi.org/10.1002/adma.201704401

149. Ma JY, Lu GL, Huang XY et al (2021) π-Conjugated-polymer-based nanofibers through living crystallization-driven self-assembly: preparation, properties and applications. Chem Commun 57(98):13259–13274. https://doi.org/10.1039/d1cc04825b

150. Shin M, Oh JY, Byun KE et al (2015) Polythiophene nanofibril bundles surface-embedded in elastomer: a route to a highly stretchable active channel layer. Adv Mater 27(7):1255–1261. https://doi.org/10.1002/adma.201404602

151. Bessaire B, Mathieu M, Salles V et al (2017) Synthesis of continuous conductive PEDOT:PSS nanofibers by electrospinning: a conformal coating for optoelectronics. ACS Appl Mater Interfaces 9(1):950–957. https://doi.org/10.1021/acsami.6b13453

152. Shin M, Song JH, Lim GH et al (2014) Highly stretchable polymer transistors consisting entirely of stretchable device components. Adv Mater 26(22):3706–3711. https://doi.org/10.1002/adma.201400009

153. Hasan MM, Hossain MM (2021) Nanomaterials-patterned flexible electrodes for wearable health monitoring: a review. J Mater Sci 56(27):14900–14942. https://doi.org/10.1007/s10853-021-06248-8

154. Park SJ, Lee J, Seo SE et al (2020) High-performance conducting polymer nanotube-based liquid-ion gated field-effect transistor aptasensor for dopamine exocytosis. Sci Rep 10(1):3772. https://doi.org/10.1038/s41598-020-60715-x

155. Wang YY, Cai KF, Yao X (2011) Facile fabrication and thermoelectric properties of PbTe-modified poly(3,4-ethylenedioxythiophene) nanotubes. ACS Appl Mater Interfaces 3(4):1163–1166. https://doi.org/10.1021/am101287w

156. Back JW, Lee S, Hwang CR et al (2011) Fabrication of conducting PEDOT nanotubes using vapor deposition polymerization. Macromol Res 19(1):33–37. https://doi.org/10.1007/s13233-011-0111-x

157. Zhang XY, Lee JS, Lee GS et al (2006) Chemical synthesis of PEDOT nanotubes. Macromolecules 39(2):470–472. https://doi.org/10.1021/ma051975c

158. Hryniewicz BM, Vidotti M (2018) PEDOT nanotubes electrochemically synthesized on flexible substrates: enhancement of supercapacitive and electrocatalytic properties. ACS Appl Nano Mater 1(8):3913–3924. https://doi.org/10.1021/acsanm.8b00694

159. Jang J, Yoon H (2003) Facile fabrication of polypyrrole nanotubes using reverse microemulsion polymerization. Chem Commun 9(6):720–721. https://doi.org/10.1039/b211716a

160. Byun J, Kim Y, Jeon G et al (2011) Ultrahigh density array of free-standing poly(3-hexylthiophene) nanotubes on conducting substrates via solution wetting. Macromolecules 44(21):8558–8562. https://doi.org/10.1021/ma202018m

161. Cho SI, Kwon WJ, Choi SJ et al (2005) Nanotube-based ultrafast electrochromic display. Adv Mater 17(2):171–175. https://doi.org/10.1002/adma.200400499

162. Niu F, Guo R, Dang LQ et al (2020) Coral-like PEDOT nanotube arrays on carbon fibers as high-rate flexible supercapacitor electrodes. ACS Appl Energy Mater 3(8):7794–7803. https://doi.org/10.1021/acsaem.0c01202

163. Shin SY, Jeong G, Phu NAMM et al (2023) Improved NO2 gas-sensing performance of an organic field-effect transistor based on reduced graphene oxide-incorporated nanoporous conjugated polymer thin films. Chem Mater 35(18):7460–7474. https://doi.org/10.1021/acs.chemmater.3c00918

164. Tran VV, Jeong G, Wi E et al (2023) Design and fabrication of ultrathin nanoporous donor–acceptor copolymer-based organic field-effect transistors for enhanced VOC sensing performance. ACS Appl Mater Interfaces 15(17):21270–21283. https://doi.org/10.1021/acsami.3c00105

165. Kowalski D, Schmuki P (2010) Polypyrrole self-organized nanopore arrays formed by controlled electropolymerization in TiO2 nanotube template. Chem Commun 46(45):8585–8587. https://doi.org/10.1039/c0cc03184d

166. Li XH, Dai L, Liu Y et al (2009) Ionic-liquid-doped polyaniline inverse opals: preparation, characterization, and application for the electrochemical impedance immunoassay of hepatitis B surface antigen. Adv Funct Mater 19(19):3120–3128. https://doi.org/10.1002/adfm.200901003

167. Zhang XN, Wang BH, Huang LZ et al (2020) Breath figure-derived porous semiconducting films for organic electronics. Sci Adv 6(13):eaaz1042. https://doi.org/10.1126/sciadv.aaz1042

168. Thompson BR, Horozov TS, Stoyanov SD et al (2019) Hierarchically structured composites and porous materials from soft templates: fabrication and applications. J Mater Chem A 7(14):8030–8049. https://doi.org/10.1039/c8ta09750j

169. Zhang AJ, Bai H, Li L (2015) Breath figure: a nature-inspired preparation method for ordered porous films. Chem Rev 115(18):9801–9868. https://doi.org/10.1021/acs.chemrev.5b00069

170. Lin J, Peng ZW, Liu YY et al (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5(1):5714. https://doi.org/10.1038/ncomms6714

171. Huang LB, Su JJ, Song Y et al (2020) Laser-induced graphene: en route to smart sensing. Nano-Micro Lett 12(1):157. https://doi.org/10.1007/s40820-020-00496-0

172. Wei YH, Qiao YC, Jiang GY et al (2019) A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano 13(8):8639–8647. https://doi.org/10.1021/acsnano.9b03218

173. Meng LY, Turner APF, Mak WC (2021) Conducting polymer-reinforced laser-irradiated graphene as a heterostructured 3D transducer for flexible skin patch biosensors. ACS Appl Mater Interfaces 13(45):54456–54465. https://doi.org/10.1021/acsami.1c13164

174. Tran VV, Lee K, Nguyen TN et al (2023) Recent advances and progress of conducting polymer-based hydrogels in strain sensor applications. Gels 9(1):12. https://doi.org/10.3390/gels9010012

175. Van Tran V, Wi E, Shin SY et al (2022) Microgels based on 0D–3D carbon materials: synthetic techniques, properties, applications, and challenges. Chemosphere 307:135981. https://doi.org/10.1016/j.chemosphere.2022.135981

176. Yuk H, Lu BY, Zhao XH (2019) Hydrogel bioelectronics. Chem Soc Rev 48(6):1642–1667. https://doi.org/10.1039/c8cs00595h

177. Shi Y, Ma CB, Peng LL et al (2015) Conductive “smart” hybrid hydrogels with PNIPAM and nanostructured conductive polymers. Adv Funct Mater 25(8):1219–1225. https://doi.org/10.1002/adfm.201404247

178. Chu X, Huang HC, Zhang HT et al (2019) Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors. Electrochim Acta 301:136–144. https://doi.org/10.1016/j.electacta.2019.01.165

179. Moussa M, El-Kady MF, Dubal D et al (2020) Self-assembly and cross-linking of conducting polymers into 3D hydrogel electrodes for supercapacitor applications. ACS Appl Energy Mater 3(1):923–932. https://doi.org/10.1021/acsaem.9b02007

180. Peng QY, Chen JS, Wang T et al (2020) Recent advances in designing conductive hydrogels for flexible electronics. InfoMat 2(5):843–865. https://doi.org/10.1002/inf2.12113

181. Pan LJ, Yu GH, Zhai DY et al (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci USA 109(24):9287–9292. https://doi.org/10.1073/pnas.1202636109

182. Li LL, Pan LJ, Ma Z et al (2018) All inkjet-printed amperometric multiplexed biosensors based on nanostructured conductive hydrogel electrodes. Nano Lett 18(6):3322–3327. https://doi.org/10.1021/acs.nanolett.8b00003

183. Yang M, Ren X, Yang T et al (2021) Polypyrrole/sulfonated multi-walled carbon nanotubes conductive hydrogel for electrochemical sensing of living cells. Chem Eng J 418:129483

184. Cui C, Fu QJ, Meng L et al (2021) Recent progress in natural biopolymers conductive hydrogels for flexible wearable sensors and energy devices: materials, structures, and performance. ACS Appl Bio Mater 4(1):85–121. https://doi.org/10.1021/acsabm.0c00807

185. Ding QQ, Xu XW, Yue YY et al (2018) Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl Mater Interfaces 10(33):27987–28002. https://doi.org/10.1021/acsami.8b09656

186. Du P, Wang J, Hsu YI et al (2023) Bio-inspired homogeneous conductive hydrogel with flexibility and adhesiveness for information transmission and sign language recognition. ACS Appl Mater Interfaces 15(19):23711–23724. https://doi.org/10.1021/acsami.3c02105

187. Kougkolos G, Golzio M, Laudebat L et al (2023) Hydrogels with electrically conductive nanomaterials for biomedical applications. J Mater Chem B 11(1):2036–2062. https://doi.org/10.1039/d2tb02019j

188. Liang GJ, Liu ZX, Mo FN et al (2018) Self-healable electroluminescent devices. Light Sci Appl 7(1):102. https://doi.org/10.1038/S41377-018-0096-8

189. Yin HY, Liu FF, Abdiryim T et al (2023) Self-healing hydrogels: from synthesis to multiple applications. ACS Mater Lett 5(7):1787–1830. https://doi.org/10.1021/acsmaterialslett.3c00320

190. Zhang CY, Wang MX, Jiang CH et al (2022) Highly adhesive and self-healing γ-PGA/PEDOT:PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics. Nano Energy 95:106991. https://doi.org/10.1016/j.nanoen.2022.106991

191. Wei HQ, Lei M, Zhang P et al (2021) Orthogonal photochemistry-assisted printing of 3D tough and stretchable conductive hydrogels. Nat Commun 12:2082. https://doi.org/10.1038/s41467-021-21869-y

192. Naficy S, Oveissi F, Patrick B et al (2018) Printed, flexible pH sensor hydrogels for wet environments. Adv Mater Technol 3(11):1800137. https://doi.org/10.1002/admt.201800137

193. Yao BW, Wang HY, Zhou QQ et al (2017) Ultrahigh-conductivity polymer hydrogels with arbitrary structures. Adv Mater 29(28):1700974. https://doi.org/10.1002/adma.201700974

194. Zhou T, Yuk H, Hu FQ et al (2023) 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat Mater 22(7):895–902. https://doi.org/10.1038/s41563-023-01569-2

195. Liu YX, Liu J, Chen SC et al (2019) Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng 3(1):58–68. https://doi.org/10.1038/s41551-018-0335-6

196. Lee S, Franklin S, Hassani FA et al (2020) Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370(6519):966–970. https://doi.org/10.1126/science.abc9735

197. Qin D, Xia YN, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5(3):491–502. https://doi.org/10.1038/nprot.2009.234

198. Yuk H, Lu BY, Lin S et al (2020) 3D printing of conducting polymers. Nat Commun 11(1):1604. https://doi.org/10.1038/s41467-020-15316-7

199. Iqbal SMA, Mahgoub I, Du E et al (2021) Advances in healthcare wearable devices. npj Flex Electron 5(1):9. https://doi.org/10.1038/s41528-021-00107-x

200. Guo SQ, Wu KJ, Li CP et al (2021) Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 4(3):969–985. https://doi.org/10.1016/j.matt.2020.12.002

201. Gao W, Emaminejad S, Nyein HYY et al (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587):509–514. https://doi.org/10.1038/nature16521

202. Nyein HYY, Tai LC, Ngo QP et al (2018) A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens 3(5):944–952. https://doi.org/10.1021/acssensors.7b00961

203. Hassan M, Abbas G, Li N et al (2022) Significance of flexible substrates for wearable and implantable devices: recent advances and perspectives. Adv Mater Technol 7(3):2100773. https://doi.org/10.1002/admt.202100773

204. Wu YH, Li YW, Tao Y et al (2023) Recent advances in the material design for intelligent wearable devices. Mater Chem Front 7(16):3278–3297. https://doi.org/10.1039/d3qm00076a

205. Pradhan S, Brooks AK, Yadavalli VK (2020) Nature-derived materials for the fabrication of functional biodevices. Mater Today Bio 7:100065. https://doi.org/10.1016/j.mtbio.2020.100065

206. Wegst UGK, Bai H, Saiz E et al (2015) Bioinspired structural materials. Nat Mater 14(1):23–36. https://doi.org/10.1038/nmat4089

207. Liu YL, Lu S, Zhang ZH et al (2023) Printable biosensors towards next-generation point-of-care testing: paper substrate as an example. Lab Chip 23(15):3328–3352. https://doi.org/10.1039/d3lc00038a

208. Kim B, Soepriatna AH, Park W et al (2021) Rapid custom prototyping of soft poroelastic biosensor for simultaneous epicardial recording and imaging. Nat Commun 12(1):3710. https://doi.org/10.1038/s41467-021-23959-3

209. Van Tran V, Park D, Lee YC (2018) Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ Sci Pollut Res 25(25):24569–24599. https://doi.org/10.1007/s11356-018-2605-y

210. Herrmann A, Haag R, Schedler U (2021) Hydrogels and their role in biosensing applications. Adv Healthc Mater 10(11):e2100062. https://doi.org/10.1002/adhm.202100062

211. Cheng YM, Feng SQ, Ning QH et al (2023) Dual-signal readout paper-based wearable biosensor with a 3D origami structure for multiplexed analyte detection in sweat. Microsyst Nanoeng 9(1):36. https://doi.org/10.1038/s41378-023-00514-2

212. Khan S, Burciu B, Filipe CDM et al (2021) DNAzyme-based biosensors: immobilization strategies, applications, and future prospective. ACS Nano 15(9):13943–13969. https://doi.org/10.1021/acsnano.1c04327

213. Kim J, Campbell AS, de Ávila BEF et al (2019) Wearable biosensors for healthcare monitoring. Nat Biotechnol 37(4):389–406. https://doi.org/10.1038/s41587-019-0045-y

214. Xu CH, Yang YR, Gao W (2020) Skin-interfaced sensors in digital medicine: from materials to applications. Matter 2(6):1414–1445. https://doi.org/10.1016/j.matt.2020.03.020

215. Yang YR, Song Y, Bo XJ et al (2020) A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol 38(2):217–224. https://doi.org/10.1038/s41587-019-0321-x

216. Xu YD, Zhao GG, Zhu L et al (2020) Pencil–paper on-skin electronics. Proc Natl Acad Sci USA 117(31):18292–18301. https://doi.org/10.1073/pnas.2008422117

217. Ates HC, Brunauer A, von Stetten F et al (2021) Integrated devices for non-invasive diagnostics. Adv Funct Mater 31(15):2010388. https://doi.org/10.1002/adfm.202010388

218. Vakilian KA (2022) Optimization methods can increase the durability of smart electrochemical biosensors. In: Proceedings of the 8th Iranian Conference on Signal Processing and Intelligent Systems, p. 1–5. https://doi.org/10.1109/ICSPIS56952.2022.10043891

219. Zhang KY, Wang JW, Liu TY et al (2021) Machine learning-reinforced noninvasive biosensors for healthcare. Adv Healthc Mater 10(17):e2100734. https://doi.org/10.1002/adhm.202100734

220. Zhang YH, Hu YB, Jiang N et al (2023) Wearable artificial intelligence biosensor networks. Biosens Bioelectron 219:114825. https://doi.org/10.1016/j.bios.2022.114825

221. Jin XF, Liu CH, Xu TL et al (2020) Artificial intelligence biosensors: challenges and prospects. Biosens Bioelectron 165:112412. https://doi.org/10.1016/j.bios.2020.112412

222. Massah J, Vakilian KA (2019) An intelligent portable biosensor for fast and accurate nitrate determination using cyclic voltammetry. Biosyst Eng 177:49–58. https://doi.org/10.1016/j.biosystemseng.2018.09.007

223. Song Y, Min JH, Yu Y et al (2020) Wireless battery-free wearable sweat sensor powered by human motion. Sci Adv 6(40):eaay9842. https://doi.org/10.1126/sciadv.aay9842

224. Yin L, Kim KN, Lv J et al (2021) A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat Commun 12(1):1542. https://doi.org/10.1038/s41467-021-21701-7

225. Yin L, Kim KN, Trifonov A et al (2022) Designing wearable microgrids: towards autonomous sustainable on-body energy management. Energy Environ Sci 15:82–101. https://doi.org/10.1039/d1ee03113a

226. Li H, Shi W, Song J et al (2019) Chemical and biomolecule sensing with organic field-effect transistors. Chem Rev 119(1):3–35. https://doi.org/10.1021/acs.chemrev.8b00016

227. Sun C, Wang X, Auwalu MA et al (2021) Organic thin film transistors-based biosensors. EcoMat 3(2):e12094. https://doi.org/10.1002/eom2.12094

228. Rivnay J, Inal S, Salleo A et al (2018) Organic electrochemical transistors. Nat Rev Mater 3(2):17086. https://doi.org/10.1038/natrevmats.2017.86

229. Wang YZ, Zeglio E, Wang LW et al (2022) Green synthesis of lactone-based conjugated polymers for n-type organic electrochemical transistors. Adv Funct Mater 32(16):2111439. https://doi.org/10.1002/adfm.202111439

230. Guo KY, Wustoni S, Koklu A et al (2021) Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nat Biomed Eng 5(7):666–677. https://doi.org/10.1038/s41551-021-00734-9

231. Wang Y, Liu YQ (2023) Insight into conjugated polymers for organic electrochemical transistors. Trends Chem 5(4):279–294. https://doi.org/10.1016/j.trechm.2023.01.006

232. Tibaldi A, Fillaud L, Anquetin G et al (2019) Electrolyte-gated organic field-effect transistors (EGOFETs) as complementary tools to electrochemistry for the study of surface processes. Electrochem Commun 98:43–46. https://doi.org/10.1016/j.elecom.2018.10.022

233. Li PY, Lei T (2022) Molecular design strategies for high-performance organic electrochemical transistors. J Polym Sci 60(3):377–392. https://doi.org/10.1002/pol.20210503

234. Kim SH, Hong K, Xie W et al (2013) Electrolyte-gated transistors for organic and printed electronics. Adv Mater 25(13):1822–1846. https://doi.org/10.1002/adma.201202790

235. Torricelli F, Adrahtas DZ, Bao ZN et al (2021) Electrolyte-gated transistors for enhanced performance bioelectronics. Nat Rev Methods Prim 1:66. https://doi.org/10.1038/s43586-021-00065-8

236. Berto M, Diacci C, D’Agata R et al (2018) EGOFET peptide aptasensor for label-free detection of inflammatory cytokines in complex fluids. Adv Biosyst 2(2):1700072. https://doi.org/10.1002/adbi.201700072

237. Ricci S, Casalini S, Parkula V et al (2020) Label-free immunodetection of α-synuclein by using a microfluidics coplanar electrolyte-gated organic field-effect transistor. Biosens Bioelectron 167:112433. https://doi.org/10.1016/j.bios.2020.112433

238. Tsai MS, Shen TL, Wu HM et al (2020) Self-powered, self-healed, and shape-adaptive ultraviolet photodetectors. ACS Appl Mater Interfaces 12(8):9755–9765. https://doi.org/10.1021/acsami.9b21446

239. You I, Kim B, Park J et al (2016) Stretchable E-skin apexcardiogram sensor. Adv Mater 28(30):6359–6364. https://doi.org/10.1002/adma.201600720

240. Chen YF, Gao ZQ, Zhang FJ et al (2022) Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration 2(1):20210112. https://doi.org/10.1002/EXP.20210112

241. Guan YS, Zhang ZL, Tang YC et al (2018) Kirigami-inspired nanoconfined polymer conducting nanosheets with 2000% stretchability. Adv Mater 30(20):e1706390. https://doi.org/10.1002/adma.201706390

242. Sokolov AN, Roberts ME, Bao ZN (2009) Fabrication of low-cost electronic biosensors. Mater Today 12(9):12–20. https://doi.org/10.1016/S1369-7021(09)70247-0

243. Cui SW, Zheng YB, Liang J et al (2016) Conducting polymer PPy nanowire-based triboelectric nanogenerator and its application for self-powered electrochemical cathodic protection. Chem Sci 7(10):6477–6483. https://doi.org/10.1039/c6sc02562e

244. Kim WG, Kim D, Jeon SB et al (2018) Multidirection and multiamplitude triboelectric nanogenerator composed of porous conductive polymer with prolonged time of current generation. Adv Energy Mater 8(21):1800654. https://doi.org/10.1002/aenm.201800654

245. Uddin ASMI, Yaqoob U, Chung GS (2016) Improving the working efficiency of a triboelectric nanogenerator by the semimetallic PEDOT:PSS hole transport layer and its application in self-powered active acetylene gas sensing. ACS Appl Mater Interfaces 8(44):30079–30089. https://doi.org/10.1021/acsami.6b08002

246. Ahmed A, Guan YS, Hassan I et al (2020) Multifunctional smart electronic skin fabricated from two-dimensional like polymer film. Nano Energy 75(C):105044. https://doi.org/10.1016/j.nanoen.2020.105044

247. Liu ZZ, Zhao TM, Guan HY et al (2019) A self-powered temperature-sensitive electronic-skin based on tribotronic effect of PDMS/PANI nanostructures. J Mater Sci Technol 35(10):2187–2193. https://doi.org/10.1016/j.jmst.2019.05.038

248. Dutta S, Patil R, Dey T (2022) Electron transfer-driven single and multi-enzyme biofuel cells for self-powering and energy bioscience. Nano Energy 96:107074. https://doi.org/10.1016/j.nanoen.2022.107074

249. Minteer SD, Liaw BY, Cooney MJ (2007) Enzyme-based biofuel cells. Curr Opin Biotechnol 18(3):228–234. https://doi.org/10.1016/j.copbio.2007.03.007

250. García Núñez C, Manjakkal L, Dahiya R (2019) Energy autonomous electronic skin. npj Flex Electron 3(1):1. https://doi.org/10.1038/s41528-018-0045-x

251. Jia WZ, Valdés-Ramírez G, Bandodkar AJ et al (2013) Epidermal biofuel cells: energy harvesting from human perspiration. Angew Chem Int Ed 52(28):7233–7236. https://doi.org/10.1002/anie.201302922

252. Yu Y, Nassar J, Xu CH et al (2020) Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci Robot 5(41):eaaz7946. https://doi.org/10.1126/SCIROBOTICS.AAZ7946

253. Lv J, Jeerapan I, Tehrani F et al (2018) Sweat-based wearable energy harvesting-storage hybrid textile devices. Energy Environ Sci 11(12):3431–3442. https://doi.org/10.1039/c8ee02792g

254. Li J, Huckleby AB, Zhang M (2022) Polymer-based thermoelectric materials: a review of power factor improving strategies. J Materiomics 8(1):204–220. https://doi.org/10.1016/j.jmat.2021.03.013

255. Russ B, Glaudell A, Urban JJ et al (2016) Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1(10):16050. https://doi.org/10.1038/natrevmats.2016.50

256. Bubnova O, Crispin X (2012) Towards polymer-based organic thermoelectric generators. Energy Environ Sci 5(11):9345–9362. https://doi.org/10.1039/c2ee22777k

257. Kim N, Lienemann S, Petsagkourakis I et al (2020) Elastic conducting polymer composites in thermoelectric modules. Nat Commun 11(1):1424. https://doi.org/10.1038/s41467-020-15135-w

258. Zhang FJ, Zang YP, Huang DZ et al (2015) Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat Commun 6(1):8356. https://doi.org/10.1038/ncomms9356

259. Mei XY, Ye DK, Zhang FJ et al (2022) Implantable application of polymer-based biosensors. J Polym Sci 60(3):328–347. https://doi.org/10.1002/pol.20210543

260. Choi YS, Hsueh YY, Koo J et al (2020) Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat Commun 11(1):5990. https://doi.org/10.1038/s41467-020-19660-6

261. Shin J, Yan Y, Bai WB et al (2019) Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat Biomed Eng 3(1):37–46. https://doi.org/10.1038/s41551-018-0300-4

262. Zhang QH, Niu SM, Wang L et al (2018) An elastic autonomous self-healing capacitive sensor based on a dynamic dual crosslinked chemical system. Adv Mater 30(33):1801435. https://doi.org/10.1002/adma.201801435

263. Sun J, Wu XY, Xiao JM et al (2023) Hydrogel-integrated multi-modal response as a wearable and implantable bidirectional interface for biosensor and therapeutic electrostimulation. ACS Appl Mater Interfaces 15(4):5897–5909. https://doi.org/10.1021/acsami.2c20057

264. Kim MK, Kim H, Jung YS et al (2017) Implantable bladder volume sensor based on resistor ladder network composed of conductive hydrogel composite. In: Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p. 1732–1735. https://doi.org/10.1109/EMBC.2017.8037177

265. Ravichandran R, Martinez JG, Jager EWH et al (2018) Type I collagen-derived injectable conductive hydrogel scaffolds as glucose sensors. ACS Appl Mater Interfaces 10(19):16244–16249. https://doi.org/10.1021/acsami.8b04091

266. Thunemann M, Lu YC, Liu X et al (2018) Deep 2-photon imaging and artifact-free optogenetics through transparent graphene microelectrode arrays. Nat Commun 9(1):2035. https://doi.org/10.1038/s41467-018-04457-5

267. Lee W, Kim D, Matsuhisa N et al (2017) Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proc Natl Acad Sci USA 114(40):10554–10559. https://doi.org/10.1073/pnas.1703886114

268. Patil AC, Xiong Z, Thakor NV (2020) Toward nontransient silk bioelectronics: engineering silk fibroin for bionic links. Small Methods 4(10):2000274. https://doi.org/10.1002/smtd.202000274

269. Cui YJ, Zhang F, Chen G et al (2021) A stretchable and transparent electrode based on PEGylated silk fibroin for in vivo dual-modal neural-vascular activity probing. Adv Mater 33(34):e2100221. https://doi.org/10.1002/adma.202100221


关于本刊

Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。


初审迅速:初审快速退稿,不影响作者投其它期刊。

审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。

收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。

文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。


期刊主页:

http://www.springer.com/journal/42242

http://www.jzus.zju.edu.cn/ (国内可下载全文)

在线投稿地址:

http://www.editorialmanager.com/bdmj/default.aspx


入群交流

围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码

生物设计与制造BDM
论文导读、领域资讯
 最新文章