1 Zubizarreta ME, Xiao S (2020) Bioengineering models of female reproduction. Bio-Des Manuf 3(3):237–251. https://doi.org/10.1007/s42242-020-00082-8
2 Yu SX, Wu Y, Luo H et al (2023) Escaping behavior of sperms on the biomimetic oviductal surface. Anal Chem 95(4):2366–2374. https://doi.org/10.1021/acs.analchem.2c04338
3 Baldini D, Ferri D, Baldini GM et al (2021) Sperm selection for ICSI: do we have a winner? Cells 10(12):3566. https://doi.org/10.3390/cells10123566
4 Giojalas LC, Guidobaldi HA (2020) Getting to and away from the egg, an interplay between several sperm transport mechanisms and a complex oviduct physiology. Mol Cell Endocrinol 518:110954. https://doi.org/10.1016/j.mce.2020.110954
5 Suarez SS (2016) Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res 363(1):185–194. https://doi.org/10.1007/s00441-015-2244-2
6 Nikshad A, Aghlmandi A, Safaralizadeh R et al (2021) Advances of microfluidic technology in reproductive biology. Life Sci 265:118767. https://doi.org/10.1016/j.lfs.2020.118767
7 Dadkhah E, Hajari MA, Abdorahimzadeh S et al (2023) Development of a novel cervix-inspired tortuous microfluidic system for efficient, high-quality sperm selection. Lab Chip 23(13):3080–3091. https://doi.org/10.1039/d3lc00037k
8 Anbari F, Khalili MA, Sultan Ahamed AM et al (2021) Microfluidic sperm selection yields higher sperm quality compared to conventional method in ICSI program: a pilot study. Syst Biol Reprod Med 67(2):137–143. https://doi.org/10.1080/19396368.2020.1837994
9 Nosrati R, Graham PJ, Zhang B et al (2017) Microfluidics for sperm analysis and selection. Nat Rev Urol 14(12):707–730. https://doi.org/10.1038/nrurol.2017.175
10 Hsu CT, Lee CI, Lin FS et al (2023) Live motile sperm sorting device for enhanced sperm-fertilization competency: comparative analysis with density-gradient centrifugation and microfluidic sperm sorting. J Assist Reprod Genet 40(8):1855–1864. https://doi.org/10.1007/s10815-023-02838-4
11 Mirsanei JS, Sheibak N, Zandieh Z et al (2022) Microfluidic chips as a method for sperm selection improve fertilization rate in couples with fertilization failure. Arch Gynecol Obstet 306(3):901–910. https://doi.org/10.1007/s00404-022-06618-w
12 Doostabadi MR, Mangoli E, Marvast LD et al (2022) Microfluidic devices employing chemo- and thermotaxis for sperm selection can improve sperm parameters and function in patients with high DNA fragmentation. Andrologia 54(11):e14623. https://doi.org/10.1111/and.14623
13 Štiavnická M, Abril-Parreño L, Nevoral J et al (2017) Non-invasive approaches to epigenetic-based sperm selection. Med Sci Monit 23:4677–4683. https://doi.org/10.12659/msm.904098
14 Ruiz-Díaz S, Mazzarella R, Navarrete-López P et al (2023) Bull spermatozoa selected by thermotaxis exhibit high DNA integrity, specific head morphometry, and improve ICSI outcome. J Anim Sci Biotechnol 14(1):11. https://doi.org/10.1186/s40104-022-00810-3
15 Berendsen JTW, Kruit SA, Atak N et al (2020) Flow-free microfluidic device for quantifying chemotaxis in spermatozoa. Anal Chem 92(4):3302–3306. https://doi.org/10.1021/acs.analchem.9b05183
16 Ma R, Xie L, Han C et al (2011) In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development. Anal Chem 83(8):2964–2970. https://doi.org/10.1021/ac103063g
17 Cho BS, Schuster TG, Zhu X et al (2003) Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem 75(7):1671–1675. https://doi.org/10.1021/ac020579e
18 Olatunji O, More A (2022) A review of the impact of microfluidics technology on sperm selection technique. Cureus 14(7):e27369. https://doi.org/10.7759/cureus.27369
19 Pérez-Cerezales S, Laguna-Barraza R, Castro AC et al (2018) Sperm selection by thermotaxis improves ICSI outcome in mice. Sci Rep 8(1):2902. https://doi.org/10.1038/s41598-018-21335-8
20 Li Z, Liu W, Qiu T et al (2014) The construction of an interfacial valve-based microfluidic chip for thermotaxis evaluation of human sperm. Biomicrofluidics 8(2):024102. https://doi.org/10.1063/1.4866851
21 Ko YJ, Maeng JH, Hwang SY et al (2018) Design, fabrication, and testing of a microfluidic device for thermotaxis and chemotaxis assays of sperm. SLAS Technol 23(6):507–515. https://doi.org/10.1177/2472630318783948
22 Soto-Heras S, Sakkas D, Miller DJ (2023) Sperm selection by the oviduct: perspectives for male fertility and assisted reproductive technologies. Biol Reprod 108(4):538–552. https://doi.org/10.1093/biolre/ioac224
23 Sequeira RC, Criswell T, Atala A et al (2020) Microfluidic systems for assisted reproductive technologies: advantages and potential applications. Tissue Eng Regen Med 17(6):787–800. https://doi.org/10.1007/s13770-020-00311-2
24 Sharma S, Kabir MA, Asghar W (2022) Selection of healthy sperm based on positive rheotaxis using a microfluidic device. Analyst 147(8):1589–1597. https://doi.org/10.1039/d1an02311j
25 Teves ME, Roldan ERS (2022) Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 102(1):7–60. https://doi.org/10.1152/physrev.00009.2020
26 Vasilescu SA, Ding L, Parast FY et al (2023) Sperm quality metrics were improved by a biomimetic microfluidic selection platform compared to swim-up methods. Microsyst Nanoeng 9:37. https://doi.org/10.1038/s41378-023-00501-7
27 Ahmadkhani N, Hosseini M, Saadatmand M et al (2022) The influence of the female reproductive tract and sperm features on the design of microfluidic sperm-sorting devices. J Assist Reprod Genet 39(1):19–36. https://doi.org/10.1007/s10815-021-02377-w
28 Suarez SS, Wu M (2017) Microfluidic devices for the study of sperm migration. Mol Hum Reprod 23(4):227–234. https://doi.org/10.1093/molehr/gaw039
29 Penny JA, Lymbery RA, Evans JP et al (2022) The use of microfluidic devices in studies of differential sperm chemotaxis. Trends Biotechnol 40(10):1144–1147. https://doi.org/10.1016/j.tibtech.2022.06.014
30 Bahat A, Eisenbach M (2006) Sperm thermotaxis. Mol Cell Endocrinol 252(1–2):115–119. https://doi.org/10.1016/j.mce.2006.03.027
31 Romero-Aguirregomezcorta J, Laguna-Barraza R, Fernández-González R et al (2021) Sperm selection by rheotaxis improves sperm quality and early embryo development. Reproduction 161(3):343–352. https://doi.org/10.1530/rep-20-0364
32 Guler C, Melil S, Ozekici U et al (2021) Sperm selection and embryo development: a comparison of the density gradient centrifugation and microfluidic chip sperm preparation methods in patients with astheno-teratozoospermia. Life 11(9):933. https://doi.org/10.3390/life11090933
33 Bahat A, Caplan SR, Eisenbach M (2012) Thermotaxis of human sperm cells in extraordinarily shallow temperature gradients over a wide range. PLoS ONE 7(7):e41915. https://doi.org/10.1371/journal.pone.0041915
34 Bahat A, Tur-Kaspa I, Gakamsky A et al (2003) Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract. Nat Med 9(2):149–150. https://doi.org/10.1038/nm0203-149
35 Boryshpolets S, Pérez-Cerezales S, Eisenbach M (2015) Behavioral mechanism of human sperm in thermotaxis: a role for hyperactivation. Hum Reprod 30(4):884–892. https://doi.org/10.1093/humrep/dev002
36 Bahat A, Eisenbach M (2010) Human sperm thermotaxis is mediated by phospholipase c and inositol trisphosphate receptor Ca2+ channel. Biol Reprod 82(3):606–616. https://doi.org/10.1095/biolreprod.109.080127
37 Eisenbach M, Giojalas LC (2006) Sperm guidance in mammals—an unpaved road to the egg. Nat Rev Mol Cell Biol 7(4):276–285. https://doi.org/10.1038/nrm1893
38 Ahmad R, Dalziel JE (2020) G protein-coupled receptors in taste physiology and pharmacology. Front Pharmacol 30(11):587664. https://doi.org/10.3389/fphar.2020.587664
39 Cygankiewicz AI, Maslowska A, Krajewska WM et al (2014) Molecular basis of taste sense: involvement of GPCR receptors. Crit Rev Food Sci Nutr 54(6):771–780. https://doi.org/10.1080/10408398.2011.606929
40 Toni LD, Garolla A, Menegazzo M et al (2016) Heat sensing receptor TRPV1 is a mediator of thermotaxis in human spermatozoa. PLoS ONE 11(12):e0167622. https://doi.org/10.1371/journal.pone.0167622
41 Hamano KI, Kawanishi T, Mizuno A et al (2016) Involvement of transient receptor potential vanilloid (TRPV) 4 in mouse sperm thermotaxis. J Reprod Dev 62(4):415–422. https://doi.org/10.1262/jrd.2015-106
42 Fujinoki M (2012) Progesterone-enhanced sperm hyperactivation through IP3–PKC and PKA signals. Reprod Med Biol 12(1):27–33. https://doi.org/10.1007/s12522-012-0137-6
43 Fotiadis D, Liang Y, Filipek S et al (2003) Rhodopsin dimers in native disc membranes. Nature 421(6919):127–128. https://doi.org/10.1038/421127a
44 Dhaka A, Viswanath V, Patapoutian A (2006) TRP ion channels and temperature sensation. Annu Rev Neurosci 29:135–161. https://doi.org/10.1146/annurev.neuro.29.051605.112958
45 Nakao S, Takeo T, Watanabe H et al (2020) Successful selection of mouse sperm with high viability and fertility using microfluidics chip cell sorter. Sci Rep 10(1):8862. https://doi.org/10.1038/s41598-020-65931-z
46 Ruiz-Díaz S, Oseguera-López I, Cuesta-Díaz DDL et al (2020) The presence of D-penicillamine during the in vitro capacitation of stallion spermatozoa prolongs hyperactive-like motility and allows for sperm selection by thermotaxis. Animals 10(9):1467. https://doi.org/10.3390/ani10091467
47 Xiao W, Yu M, Yuan Y et al (2022) Thermotaxis of mammalian sperm. Mol Hum Reprod 28(8):gaac027. https://doi.org/10.1093/molehr/gaac027
48 Yan Y, Zhang B, Fu Q et al (2021) A fully integrated biomimetic microfluidic device for evaluation of sperm response to thermotaxis and chemotaxis. Lab Chip 21(2):310–318. https://doi.org/10.1039/d0lc00845a