中国科学院空天信息创新研究院吴一戎院士团队 | 脑深部精准功能定位多通道新器件

文摘   科学   2024-08-16 18:24   浙江  

内容简介


帕金森病等功能性脑病严重影响患者生活质量。我国患者数量超9000万,微电极精准功能定位是帕金森脑深部刺激手术治疗成功的关键。然而,临床仅有单通道的定位微电极,存在刺激和记录位点少、触点面积大、检测通道少等技术瓶颈,亟需研发精准功能定位多通道新器件。


本研究论文聚焦于帕金森病脑深部核团检测及精准功能定位的微电极阵列制备和活体动物测试验证。丘脑底核(STN)被认为是电刺激治疗帕金森的最佳靶点,由于其体积小且位置深,精准功能定位难度大。本研究设计并制备了与大鼠丘脑底核STN靶点核团形状匹配的16位点微电极阵列,实现了帕金森大鼠健侧和损毁侧STN及其上下临近核团神经细胞放电信息的同步原位检测。相较于健侧,损毁侧STN表现出更高的动作电位放电率、动作电位振幅以及局部场电位功率,并在β频段表现出剧烈震荡,通过对该特征信号的模式识别,实现了对STN的细胞水平的多位点实时精准功能定位。本研究为帕金森病等重大脑疾病脑深部精准功能定位提供了一种多通道高时空分辨的新器件和多功能工具,在帕金森、癫痫、重度抑郁症等神经外科术前手术规划和术中精准定位中具有广泛的应用前景。


引用本文(点击最下方阅读原文可下载PDF)

Jing L, Xu Z, Fan P, Lu B, Mo F, Hu R, Xu W, Shan J, Jia Q, Zhu Y, Duan Y, Wang M, Wu Y, Cai X, 2024. Deep brain implantable microelectrode arrays for detection and functional localization of the subthalamic nucleus in rats with Parkinson’s disease. Bio-des Manuf 7(4):439–452. https://doi.org/10.1007/s42242-023-00266-y

文章导读



图1 多通道微电极阵列脑深部精准功能定位示意图


图2 微电极阵列(MEA)植入示意图。(a) 大鼠两侧脑区同时植入MEA检测识别丘脑底核(STN);(b) MEA的组成结构:导电层、基底层以及绝缘层;(c) MEA植入路径经过的核团脑图谱;(d) MEA检测位点分布完全贴合STN形状


图3 微电极阵列(MEA)的制备工艺及修饰图。(a) 通过热氧化在绝缘衬底硅(SOI)上沉积二氧化硅(SiO2);(b) 溅射铬/铂(Cr/Pt)并旋涂AZ5214光刻胶;(c) 剥离Cr/Pt形成导电层;(d) 沉积绝缘层氧化硅/氮化硅(SiO2/Si3N4)并通过AZ1500光刻胶图形化;(e) 通过三氟甲烷(CHF3)离子刻蚀暴露电极检测位点和焊盘;(f) 旋涂AZ4620光刻胶并图形化;(g) 通过深刻蚀形成形状层;(h) 刻蚀SOI背面的氧化硅并用黑胶保护电极正面;(i) 通过KOH湿法腐蚀释放电极;(j) MEA的显微镜图;(k,l) MEA位点的扫描电镜图


图4 不同材料修饰微电极阵列的电学表征。(a) MEA在不同频率下的阻抗特性;(b) MEA在不同频率下的相位特性;(c) MEA在1千赫兹(kHz)下的平均阻抗值;(d) MEA在1 kHz下的平均相位值


图5 大鼠双侧脑区不同深度的局部场电位(LFP)信号和动作电位(Spike)活动图。(a) 从内侧顶叶联想皮层(MPtA)到脑梗(cp)的11个代表核团中健侧(左)与损毁侧(右)LFP变化对比;(b) 从内侧顶叶联想皮层(MPtA)到脑梗(cp)的11个代表核团中健侧(左)与损毁侧(右)Spike变化对比;(c) 从内侧顶叶联想皮层(MPtA)到脑梗(cp)的11个代表核团中健侧(蓝色)与损毁侧(红色)Spike波形对比


图6 双侧脑区不同深度核团的神经活动平均值对比。(a) 从内侧顶叶联想皮层(MPtA)到脑梗(cp)平均局部场电位(LFP)功率的变化;(b) 从MPtA到cp平均动作电位(Spike)放电率的变化;(c) 从MPtA到cp平均Spike幅值的变化


图7 丘脑底核(STN)和相邻核团(腹侧未定义带(ZIV)、脑梗(cp))神经细胞放电信息对比。(a) 微电极阵列(MEA)在STN上边界核团的轨迹和检测到的代表型神经元的示意图;(b) MEA在STN下边界核团的轨迹和检测到的代表型神经元的示意图;(c) MEA记录的从ZIV到cp的原始局部场电位(LFP)和动作电位(Spike)信号;(d) 损毁侧脑区STN与相邻核团LFP功率、Spike放电率和Spike幅值的归一化分析;(e) 健侧脑区STN与相邻核团LFP功率、Spike放电率和Spike幅值的归一化分析


图8 动作电位(Spike)和局部场电位(LFP)的功率谱密度(PSD)分析。(a) 损毁侧脑区腹侧未定义带(ZIV)中的LFP的PSD;(b) 损毁侧脑区丘脑底核(STN)中LFP的PSD;(c) 损毁侧脑区脑梗(cp)中的LFP的PSD;(d) 损毁侧脑区腹侧未定义带(ZIV)中的Spike的PSD;(e) 损毁侧脑区丘脑底核(STN)中Spike的PSD;(f) 损毁侧脑区脑梗(cp)中的Spike的PSD;(g) 损毁侧和健侧脑区STN的LFP的PSD以及Spike的PSD对比;(h) 损毁侧脑区与健侧脑区中STNδ 和 β 频段的 LFP 功率对比

参考文献

上下滑动以阅览

1. Schmauss M (2022) Depression and Parkinson’s disease. Fortschritte Der Neurol Psychiatr 90(04):145–146. https://doi.org/10.1055/a-1683-1840

2. Ceballos-Baumann A (2022) Parkinson’s disease—what is new? Dtsch Med Wochenschr 147(06):337–343. https://doi.org/10.1055/a-1646-6321

3. Guatteo E, Yee A, McKearney J et al (2013) Dual effects of L-DOPA on nigral dopaminergic neurons. Exp Neurol 247:582–594. https://doi.org/10.1016/j.expneurol.2013.02.009

4. Zhao YT, Liu L, Zhao Y et al (2022) The effect and safety of levodopa alone versus levodopa sparing therapy for early Parkinson’s disease: a systematic review and meta-analysis. J Neurol 269(4):1834–1850. https://doi.org/10.1007/s00415-021-10830-0

5. Jahanshahi M, Leimbach F, Rawji V (2022) Short and long-term cognitive effects of subthalamic deep brain stimulation in Parkinson’s disease and identification of relevant factors. J Parkinsons Dis 12(7):2191–2209. https://doi.org/10.3233/jpd-223446

6. Herzog J, Fietzek U, Hamel W et al (2004) Most effective stimulation site in subthalamic deep brain stimulation for Parkinson’s disease. Mov Disord 19(9):1050–1054. https://doi.org/10.1002/mds.20056

7. Kinfe TM, Vesper J (2013) The impact of multichannel microelectrode recording (MER) in deep brain stimulation of the basal ganglia. Acta Neurochir Suppl 117:27–33. https://doi.org/10.1007/978-3-7091-1482-7_5

8. Richardson RM, Ostrem JL, Starr PA (2009) Surgical repositioning of misplaced subthalamic electrodes in Parkinson’s disease: location of effective and ineffective leads. Stereotact Funct Neurosurg 87(5):297–303. https://doi.org/10.1159/000230692

9. Cui ZQ, Pan LS, Song HF et al (2016) Intraoperative MRI for optimizing electrode placement for deep brain stimulation of the subthalamic nucleus in Parkinson disease. J Neurosur 124(1):62–69. https://doi.org/10.3171/2015.1.Jns141534

10. Horn A, Li NF, Dembek TA et al (2019) Lead-DBS v2: towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage 184:293–316. https://doi.org/10.1016/j.neuroimage.2018.08.068

11. Novak P, Przybyszewski AW, Barborica A et al (2011) Localization of the subthalamic nucleus in Parkinson disease using multiunit activity. J Neurol Sci 310(1–2):44–49. https://doi.org/10.1016/j.jns.2011.07.027

12. Sterio D, Zonenshayn M, Mogilner AY et al (2002) Neurophysiological refinement of subthalamic nucleus targeting. Neurosurgery 50(1):58–67. https://doi.org/10.1097/00006123-200201000-00012

13. Benabid AL, Pollak P, Gross C et al (1993) Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease. Stereotact Funct Neurosurg 62(1–4):76–84. https://doi.org/10.1159/000098600

14. Limousin P, Pollak P, Benazzouz A et al (1995) Effect on Parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345(8942):91–95. https://doi.org/10.1016/s0140-6736(95)90062-4

15. Gross RE, Krack P, Rodriguez-Oroz MC et al (2006) Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov Disord 21(S14):S259–S283. https://doi.org/10.1002/mds.20960

16. Ozturk M, Kaku H, Jimenez-Shahed J et al (2020) Subthalamic single cell and oscillatory neural dynamics of a dyskinetic medicated patient with Parkinson’s disease. Front Neurosci 14:391. https://doi.org/10.3389/fnins.2020.00391

17. Tamir I, Wang D, Chen W et al (2020) Eight cylindrical contact lead recordings in the subthalamic region localize beta oscillations source to the dorsal STN. Neurobiol Dis 146:105090. https://doi.org/10.1016/j.nbd.2020.105090

18. Mo F, Xu ZJ, Yang GC et al (2022) Single-neuron detection of place cells remapping in short-term memory using motion microelectrode arrays. Biosens Bioelectron 217:114726. https://doi.org/10.1016/j.bios.2022.114726

19. Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents—EEG, ECoG LFP and spikes. Nat Rev Neurosci 13(6):407–420. https://doi.org/10.1038/nrn3241

20. Buzsaki G (2012) How do neurons sense a spike burst? Neuron 73(5):857–859. https://doi.org/10.1016/j.neuron.2012.02.013

21. Xiao GH, Song YL, Zhang Y et al (2019) Microelectrode arrays modified with nanocomposites for monitoring dopamine and spike firings under deep brain stimulation in rat models of Parkinson’s disease. ACS Sens 4(8):1992–2000. https://doi.org/10.1021/acssensors.9b00182

22. Zhang Y, Xu SW, Xiao GH et al (2019) High frequency stimulation of subthalamic nucleus synchronously modulates primary motor cortex and caudate putamen based on dopamine concentration and electrophysiology activities using microelectrode arrays in Parkinson’s disease rats. Sens Actuat B Chem 301:127126. https://doi.org/10.1016/j.snb.2019.127126

23. Prajapati DG, Kandasubramanian B (2019) Progress in the development of intrinsically conducting polymer composites as biosensors. Macromol Chem Phys 220(10):26. https://doi.org/10.1002/macp.201800561

24. Wang XJ, Sjoberg-Eerola P, Eriksson JE et al (2010) The effect of counter ions and substrate material on the growth and morphology of poly(3,4-ethylenedioxythiophene) films: towards the application of enzyme electrode construction in biofuel cells. Synth Met 160(13–14):1373–1381. https://doi.org/10.1016/j.synthmet.2010.01.033

25. King ZA, Shaw CM, Spanninga SA et al (2011) Structural, chemical and electrochemical characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) prepared with various counter-ions and heat treatments. Polymer 52(5):1302–1308. https://doi.org/10.1016/j.polymer.2011.01.042

26. Ludwig KA, Uram JD, Yang JY et al (2006) Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J Neural Eng 3(1):59–70. https://doi.org/10.1088/1741-2560/3/1/007

27. Furukawa Y, Shimada A, Kato K et al (1830) (2013) Monitoring neural stem cell differentiation using PEDOT-PSS based MEA. Biochim Biophys Acta-Gen Subj 9:4329–4333. https://doi.org/10.1016/j.bbagen.2013.01.022

28. Groenendaal L, Jonas F, Freitag D et al (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12(7):481–494. https://doi.org/10.1002/(SICI)1521-4095(200004)12:7%3c481::AID-ADMA481%3e3.0.CO;2-C

29. Li XR, Song YL, Xiao GH et al (2021) PDMS-parylene hybrid, flexible micro-ECoG electrode array for spatiotemporal mapping of epileptic electrophysiological activity from multicortical brain regions. ACS Appl Bio Mater 4(11):8013–8022. https://doi.org/10.1021/acsabm.1c00923

30. Zhou HH, Cheng X, Rao L et al (2013) Poly(3,4-ethylenedioxythiophene)/multiwall carbon nanotube composite coatings for improving the stability of microelectrodes in neural prostheses applications. Acta Biomater 9(5):6439–6449. https://doi.org/10.1016/j.actbio.2013.01.042

31. Keefer EW, Botterman BR, Romero MI et al (2008) Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 3(7):434–439. https://doi.org/10.1038/nnano.2008.174

32. Malarkey EB, Parpura V (2010) Carbon nanotubes in neuroscience. In: Czernicki Z, Baethmann A, Ito U et al (Eds.), Brain Edema XIV: Acta Neurochirurgica Supplementum. Springer, Vienna, p.337–341

33. He EH, Xu SW, Xiao GH et al (2021) MWCNTs/PEDOT:PSS nanocomposites-modified microelectrode array for spatial dynamics recording of epileptic discharges in multi-subregion of hippocampal slice. Sens Actuat B Chem 329:129190. https://doi.org/10.1016/j.snb.2020.129190

34. Xu SW, Zhang Y, Zhang S et al (2018) An integrated system for synchronous detection of neuron spikes and dopamine activities in the striatum of Parkinson monkey brain. J Neurosci Method 304:83–91. https://doi.org/10.1016/j.jneumeth.2018.04.015

35. McGregor MM, Nelson AB (2019) Circuit mechanisms of Parkinson’s disease. Neuron 101(6):1042–1056. https://doi.org/10.1016/j.neuron.2019.03.004

36. Sharott A, Gulberti A, Hamel W et al (2018) Spatio-temporal dynamics of cortical drive to human subthalamic nucleus neurons in Parkinson’s disease. Neurobiol Dis 112:49–62. https://doi.org/10.1016/j.nbd.2018.01.001

37. Asadi A, Asl MM, Vahabie AH et al (2022) The origin of abnormal beta oscillations in the Parkinsonian corticobasal ganglia circuits. Parkinsons Dis 2022:13. https://doi.org/10.1155/2022/7524066

38. Li YJ, Zeng YQ, Lin MG et al (2023) Beta oscillations of dorsal STN as a potential biomarker in Parkinson’s disease motor subtypes: an exploratory study. Brain Sci 13(5):737. https://doi.org/10.3390/brainsci13050737

39. Weinberger M, Mahant N, Hutchison WD et al (2006) Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol 96(6):3248–3256. https://doi.org/10.1152/jn.00697.2006

40. Thompson JA, Tekriwal A, Felsen G et al (2018) Sleep patterns in Parkinson’s disease: direct recordings from the subthalamic nucleus. J Neurol Neurosurg Psychiatry 89(1):95–104. https://doi.org/10.1136/jnnp-2017-316115

41. Kayaba M, Park I, Iwayama K et al (2017) Energy metabolism differs between sleep stages and begins to increase prior to awakening. Metab-Clin Exp 69:14–23. https://doi.org/10.1016/j.metabol.2016.12.016

42. Marmor O, Valsky D, Joshua M et al (2017) Local versus volume conductance activity of field potentials in the human subthalamic nucleus. J Neurophysiol 117(6):2140–2151. https://doi.org/10.1152/jn.00756.2016

43. Horn A, Kuhn AA (2015) Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. Neuroimage 107:127–135. https://doi.org/10.1016/j.neuroimage.2014.12.002

44. Steigerwald F, Potter M, Herzog J et al (2008) Neuronal activity of the human subthalamic nucleus in the Parkinsonian and nonparkinsonian state. J Neurophysiol 100(5):2515–2524. https://doi.org/10.1152/jn.90574.2008

45. Benabid AL, Chabardes S, Mitrofanis J et al (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8(1):67–81. https://doi.org/10.1016/s1474-4422(08)70291-6

46. Rosin B, Slovik M, Mitelman R et al (2011) Closed-loop deep brain stimulation is superior in ameliorating Parkinsonism. Neuron 72(2):370–384.


关于本刊

Bio-Design and Manufacturing(中文名《生物设计与制造》)简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。


初审迅速:初审快速退稿,不影响作者投其它期刊。

审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。

收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。

文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。


期刊主页:

http://www.springer.com/journal/42242

http://www.jzus.zju.edu.cn/ (国内可下载全文)

在线投稿地址:

http://www.editorialmanager.com/bdmj/default.aspx


入群交流

围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码

生物设计与制造BDM
论文导读、领域资讯
 最新文章