1. Schmauss M (2022) Depression and Parkinson’s disease. Fortschritte Der Neurol Psychiatr 90(04):145–146. https://doi.org/10.1055/a-1683-1840
2. Ceballos-Baumann A (2022) Parkinson’s disease—what is new? Dtsch Med Wochenschr 147(06):337–343. https://doi.org/10.1055/a-1646-6321
3. Guatteo E, Yee A, McKearney J et al (2013) Dual effects of L-DOPA on nigral dopaminergic neurons. Exp Neurol 247:582–594. https://doi.org/10.1016/j.expneurol.2013.02.009
4. Zhao YT, Liu L, Zhao Y et al (2022) The effect and safety of levodopa alone versus levodopa sparing therapy for early Parkinson’s disease: a systematic review and meta-analysis. J Neurol 269(4):1834–1850. https://doi.org/10.1007/s00415-021-10830-0
5. Jahanshahi M, Leimbach F, Rawji V (2022) Short and long-term cognitive effects of subthalamic deep brain stimulation in Parkinson’s disease and identification of relevant factors. J Parkinsons Dis 12(7):2191–2209. https://doi.org/10.3233/jpd-223446
6. Herzog J, Fietzek U, Hamel W et al (2004) Most effective stimulation site in subthalamic deep brain stimulation for Parkinson’s disease. Mov Disord 19(9):1050–1054. https://doi.org/10.1002/mds.20056
7. Kinfe TM, Vesper J (2013) The impact of multichannel microelectrode recording (MER) in deep brain stimulation of the basal ganglia. Acta Neurochir Suppl 117:27–33. https://doi.org/10.1007/978-3-7091-1482-7_5
8. Richardson RM, Ostrem JL, Starr PA (2009) Surgical repositioning of misplaced subthalamic electrodes in Parkinson’s disease: location of effective and ineffective leads. Stereotact Funct Neurosurg 87(5):297–303. https://doi.org/10.1159/000230692
9. Cui ZQ, Pan LS, Song HF et al (2016) Intraoperative MRI for optimizing electrode placement for deep brain stimulation of the subthalamic nucleus in Parkinson disease. J Neurosur 124(1):62–69. https://doi.org/10.3171/2015.1.Jns141534
10. Horn A, Li NF, Dembek TA et al (2019) Lead-DBS v2: towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage 184:293–316. https://doi.org/10.1016/j.neuroimage.2018.08.068
11. Novak P, Przybyszewski AW, Barborica A et al (2011) Localization of the subthalamic nucleus in Parkinson disease using multiunit activity. J Neurol Sci 310(1–2):44–49. https://doi.org/10.1016/j.jns.2011.07.027
12. Sterio D, Zonenshayn M, Mogilner AY et al (2002) Neurophysiological refinement of subthalamic nucleus targeting. Neurosurgery 50(1):58–67. https://doi.org/10.1097/00006123-200201000-00012
13. Benabid AL, Pollak P, Gross C et al (1993) Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease. Stereotact Funct Neurosurg 62(1–4):76–84. https://doi.org/10.1159/000098600
14. Limousin P, Pollak P, Benazzouz A et al (1995) Effect on Parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345(8942):91–95. https://doi.org/10.1016/s0140-6736(95)90062-4
15. Gross RE, Krack P, Rodriguez-Oroz MC et al (2006) Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov Disord 21(S14):S259–S283. https://doi.org/10.1002/mds.20960
16. Ozturk M, Kaku H, Jimenez-Shahed J et al (2020) Subthalamic single cell and oscillatory neural dynamics of a dyskinetic medicated patient with Parkinson’s disease. Front Neurosci 14:391. https://doi.org/10.3389/fnins.2020.00391
17. Tamir I, Wang D, Chen W et al (2020) Eight cylindrical contact lead recordings in the subthalamic region localize beta oscillations source to the dorsal STN. Neurobiol Dis 146:105090. https://doi.org/10.1016/j.nbd.2020.105090
18. Mo F, Xu ZJ, Yang GC et al (2022) Single-neuron detection of place cells remapping in short-term memory using motion microelectrode arrays. Biosens Bioelectron 217:114726. https://doi.org/10.1016/j.bios.2022.114726
19. Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents—EEG, ECoG LFP and spikes. Nat Rev Neurosci 13(6):407–420. https://doi.org/10.1038/nrn3241
20. Buzsaki G (2012) How do neurons sense a spike burst? Neuron 73(5):857–859. https://doi.org/10.1016/j.neuron.2012.02.013
21. Xiao GH, Song YL, Zhang Y et al (2019) Microelectrode arrays modified with nanocomposites for monitoring dopamine and spike firings under deep brain stimulation in rat models of Parkinson’s disease. ACS Sens 4(8):1992–2000. https://doi.org/10.1021/acssensors.9b00182
22. Zhang Y, Xu SW, Xiao GH et al (2019) High frequency stimulation of subthalamic nucleus synchronously modulates primary motor cortex and caudate putamen based on dopamine concentration and electrophysiology activities using microelectrode arrays in Parkinson’s disease rats. Sens Actuat B Chem 301:127126. https://doi.org/10.1016/j.snb.2019.127126
23. Prajapati DG, Kandasubramanian B (2019) Progress in the development of intrinsically conducting polymer composites as biosensors. Macromol Chem Phys 220(10):26. https://doi.org/10.1002/macp.201800561
24. Wang XJ, Sjoberg-Eerola P, Eriksson JE et al (2010) The effect of counter ions and substrate material on the growth and morphology of poly(3,4-ethylenedioxythiophene) films: towards the application of enzyme electrode construction in biofuel cells. Synth Met 160(13–14):1373–1381. https://doi.org/10.1016/j.synthmet.2010.01.033
25. King ZA, Shaw CM, Spanninga SA et al (2011) Structural, chemical and electrochemical characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) prepared with various counter-ions and heat treatments. Polymer 52(5):1302–1308. https://doi.org/10.1016/j.polymer.2011.01.042
26. Ludwig KA, Uram JD, Yang JY et al (2006) Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J Neural Eng 3(1):59–70. https://doi.org/10.1088/1741-2560/3/1/007
27. Furukawa Y, Shimada A, Kato K et al (1830) (2013) Monitoring neural stem cell differentiation using PEDOT-PSS based MEA. Biochim Biophys Acta-Gen Subj 9:4329–4333. https://doi.org/10.1016/j.bbagen.2013.01.022
28. Groenendaal L, Jonas F, Freitag D et al (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12(7):481–494. https://doi.org/10.1002/(SICI)1521-4095(200004)12:7%3c481::AID-ADMA481%3e3.0.CO;2-C
29. Li XR, Song YL, Xiao GH et al (2021) PDMS-parylene hybrid, flexible micro-ECoG electrode array for spatiotemporal mapping of epileptic electrophysiological activity from multicortical brain regions. ACS Appl Bio Mater 4(11):8013–8022. https://doi.org/10.1021/acsabm.1c00923
30. Zhou HH, Cheng X, Rao L et al (2013) Poly(3,4-ethylenedioxythiophene)/multiwall carbon nanotube composite coatings for improving the stability of microelectrodes in neural prostheses applications. Acta Biomater 9(5):6439–6449. https://doi.org/10.1016/j.actbio.2013.01.042
31. Keefer EW, Botterman BR, Romero MI et al (2008) Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 3(7):434–439. https://doi.org/10.1038/nnano.2008.174
32. Malarkey EB, Parpura V (2010) Carbon nanotubes in neuroscience. In: Czernicki Z, Baethmann A, Ito U et al (Eds.), Brain Edema XIV: Acta Neurochirurgica Supplementum. Springer, Vienna, p.337–341
33. He EH, Xu SW, Xiao GH et al (2021) MWCNTs/PEDOT:PSS nanocomposites-modified microelectrode array for spatial dynamics recording of epileptic discharges in multi-subregion of hippocampal slice. Sens Actuat B Chem 329:129190. https://doi.org/10.1016/j.snb.2020.129190
34. Xu SW, Zhang Y, Zhang S et al (2018) An integrated system for synchronous detection of neuron spikes and dopamine activities in the striatum of Parkinson monkey brain. J Neurosci Method 304:83–91. https://doi.org/10.1016/j.jneumeth.2018.04.015
35. McGregor MM, Nelson AB (2019) Circuit mechanisms of Parkinson’s disease. Neuron 101(6):1042–1056. https://doi.org/10.1016/j.neuron.2019.03.004
36. Sharott A, Gulberti A, Hamel W et al (2018) Spatio-temporal dynamics of cortical drive to human subthalamic nucleus neurons in Parkinson’s disease. Neurobiol Dis 112:49–62. https://doi.org/10.1016/j.nbd.2018.01.001
37. Asadi A, Asl MM, Vahabie AH et al (2022) The origin of abnormal beta oscillations in the Parkinsonian corticobasal ganglia circuits. Parkinsons Dis 2022:13. https://doi.org/10.1155/2022/7524066
38. Li YJ, Zeng YQ, Lin MG et al (2023) Beta oscillations of dorsal STN as a potential biomarker in Parkinson’s disease motor subtypes: an exploratory study. Brain Sci 13(5):737. https://doi.org/10.3390/brainsci13050737
39. Weinberger M, Mahant N, Hutchison WD et al (2006) Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol 96(6):3248–3256. https://doi.org/10.1152/jn.00697.2006
40. Thompson JA, Tekriwal A, Felsen G et al (2018) Sleep patterns in Parkinson’s disease: direct recordings from the subthalamic nucleus. J Neurol Neurosurg Psychiatry 89(1):95–104. https://doi.org/10.1136/jnnp-2017-316115
41. Kayaba M, Park I, Iwayama K et al (2017) Energy metabolism differs between sleep stages and begins to increase prior to awakening. Metab-Clin Exp 69:14–23. https://doi.org/10.1016/j.metabol.2016.12.016
42. Marmor O, Valsky D, Joshua M et al (2017) Local versus volume conductance activity of field potentials in the human subthalamic nucleus. J Neurophysiol 117(6):2140–2151. https://doi.org/10.1152/jn.00756.2016
43. Horn A, Kuhn AA (2015) Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. Neuroimage 107:127–135. https://doi.org/10.1016/j.neuroimage.2014.12.002
44. Steigerwald F, Potter M, Herzog J et al (2008) Neuronal activity of the human subthalamic nucleus in the Parkinsonian and nonparkinsonian state. J Neurophysiol 100(5):2515–2524. https://doi.org/10.1152/jn.90574.2008
45. Benabid AL, Chabardes S, Mitrofanis J et al (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8(1):67–81. https://doi.org/10.1016/s1474-4422(08)70291-6
46. Rosin B, Slovik M, Mitelman R et al (2011) Closed-loop deep brain stimulation is superior in ameliorating Parkinsonism. Neuron 72(2):370–384.