意大利CNR纳米技术研究所Mercato等 | 具有微米空间分辨率的氧气感测的高度敏感比率荧光纤维矩阵

文摘   2024-06-17 18:59   浙江  

内容简介


本研究论文聚焦具有微米空间分辨率的氧气感测的高度敏感比率荧光纤维矩阵。氧(O2)感应矩阵是在长期细胞培养中实时监测细胞外O2消耗水平的有前景的工具。在本研究中,研究人员利用静电纺丝法制备了比例氧感应膜,该方法是一种简便、低成本、可扩展和可靠的纳米纤维制造方法。将聚己内酯和聚二甲基硅氧烷聚合物与二氯化三(4,7-二苯基-1,10-邻菲罗啉)钌(II) 和异硫氰酸罗丹明B混合,其中前者用作氧感应探针,后者用作参考染剂。利用扫描电子显微镜对功能化支架进行形态学表征,并通过傅里叶变换红外光谱、热重分析和水接触角测量获得其物理化学特性。利用共聚焦激光扫描显微镜对感应能力进行研究,包括光漂白、可逆性和校准曲线等,以检测不同溶解氧(DO)浓度。电纺感应纳米纤维对生理-病理范围内0.5%至20%溶解氧浓度的变化具有高响应能力,并且在比例成像下具有良好的稳定性。此外,这些感应系统对于促进三种癌细胞系(即转移性黑色素瘤细胞系SK-MEL2、乳腺癌细胞系MCF-7和胰腺导管腺癌细胞系Panc-1)的细胞生长和黏附具有高生物相容性,在体外再现了适宜的生物环境。这些氧感应生物材料有潜力在药物测试/验证和组织再生过程中测量由周围氧含量变化引起的细胞代谢变化。


引用本文(点击最下方阅读原文可下载PDF)

Grasso G, Onesto V, Forciniti S, et al., 2024. Highly sensitive ratiometric fluorescent fiber matrices for oxygen sensing with micrometer spatial resolution. Bio-des Manuf 7(3):292–306. https://doi.org/10.1007/s42242-024-00277-3

文章导读



图1 比例式O2传感光纤的微观形态


图2 比例氧传感纤维的结构表征


图3 CLSM成像和比例氧传感纤维的传感性能


图4 生物相容性和比例氧感纤维上的细胞增殖

参考文献

上下滑动以阅览

1. Kim LC, Simon MC (2022) Hypoxia-inducible factors in cancer. Cancer Res 82(2):195–196. https://doi.org/10.1158/0008-5472.CAN-21-3780

2. D’Aguanno S, Mallone F, Marenco M et al (2021) Hypoxia-dependent drivers of melanoma progression. J Exp Clin Cancer Res 40(1):159. https://doi.org/10.1186/s13046-021-01926-6

3. Tang K, Zhu LY, Chen J et al (2021) Hypoxia promotes breast cancer cell growth by activating a glycogen metabolic program. Cancer Res 81(19):4949–4963. https://doi.org/10.1158/0008-5472.CAN-21-0753

4. Tao JX, Yang G, Zhou WC et al (2021) Targeting hypoxic tumor microenvironment in pancreatic cancer. J Hematol Oncol 14(1):14. https://doi.org/10.1186/s13045-020-01030-w

5. Sebestyén A, Kopper L, Dankó T et al (2021) Hypoxia signaling in cancer: from basics to clinical practice. Pathol Oncol Res 27:1609802. https://doi.org/10.3389/pore.2021.1609802

6. Roussakis E, Li ZX, Nichols AJ et al (2015) Oxygen-sensing methods in biomedicine from the macroscale to the microscale. Angew Chemie Int Ed 54(29):8340–8362. https://doi.org/10.1002/anie.201410646

7. Yoshihara T, Hirakawa Y, Hosaka M et al (2017) Oxygen imaging of living cells and tissues using luminescent molecular probes. J Photochem Photobiol C Photochem Rev 30:71–95. https://doi.org/10.1016/j.jphotochemrev.2017.01.001

8. Wang XD, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43(10):3666–3761. https://doi.org/10.1039/C4CS00039K

9. Grist SM, Bennewith KL, Cheung KC (2022) Oxygen measurement in microdevices. Annu Rev Anal Chem 15(1):221–246. https://doi.org/10.1146/annurev-anchem-061020-111458

10. Raju LJ, Rajkumar E (2023) Coordination compounds of iron, ruthenium and osmium. In: Ameta R, Rai AK, Bhatt JP et al (Eds.), Photochemistry and Photophysics of Coordination Compounds. Elsevier, Amsterdam, p.135–203. https://doi.org/10.1016/B978-0-12-824493-7.00008-3

11. Gui RJ, Jin H, Bu XN et al (2019) Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coord Chem Rev 383:82–103. https://doi.org/10.1016/j.ccr.2019.01.004

12. Bigdeli A, Ghasemi F, Abbasi-Moayed S et al (2019) Ratiometric fluorescent nanoprobes for visual detection: design principles and recent advances—a review. Anal Chim Acta 1079:30–58. https://doi.org/10.1016/j.aca.2019.06.035

13. Feng Q, Zhang KY, Yang BG et al (2022) Editorial: biomedical applications of natural polymers. Front Bioeng Biotechnol 10:1077823. https://doi.org/10.3389/fbioe.2022.1077823

14. Wei Q, Deng NN, Guo JL et al (2018) Synthetic polymers for biomedical applications. Int J Biomater 2018:7158621. https://doi.org/10.1155/2018/7158621

15. Chandra A, Prasad S, Gigli G et al (2020) Fluorescent nanoparticles for sensing. In: Parak WJ, Feliu N (Eds.), Colloids for Nanobiotechnology (1st Ed.). Elsevier Ltd., Amsterdam, p.117–149. https://doi.org/10.1016/B978-0-08-102828-5.00006-1

16. Grasso G, Colella F, Forciniti S et al (2023) Fluorescent nano- and microparticles for sensing cellular microenvironment: past, present and future applications. Nanoscale Adv 5:4311–4336. https://doi.org/10.1039/D3NA00218G

17. Xu RY, Wang YF, Duan XP et al (2016) Nanoscale metal–organic frameworks for ratiometric oxygen sensing in live cells. J Am Chem Soc 138(7):2158–2161. https://doi.org/10.1021/jacs.5b13458

18. Wen Y, Zhang SD, Yuan W et al (2023) Afterglow/fluorescence dual-emissive ratiometric oxygen probe for tumor hypoxia imaging. Anal Chem 95(4):2478–2486. https://doi.org/10.1021/acs.analchem.2c04764

19. Gkika KS, Kargaard A, Burke CS et al (2021) Ru(II)/BODIPY core co-encapsulated ratiometric nanotools for intracellular O2 sensing in live cancer cells. RSC Chem Biol 2(5):1520–1533. https://doi.org/10.1039/D1CB00102G

20. Zhao Q, Pan TT, Xiang G et al (2018) Highly efficient ratiometric extracellular oxygen sensors through physical incorporation of a conjugated polymer and PtTFPP in graft copolymers. Sensor Actuat B Chem 273:242–252. https://doi.org/10.1016/j.snb.2018.06.026

21. Murphy DA, Courtneidge SA (2011) The “ins” and “outs” of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 12(7):413–426. https://doi.org/10.1038/nrm3141

22. Shin DS, Schroeder ME, Anseth KS (2022) Impact of collagen triple helix structure on melanoma cell invadopodia formation and matrix degradation upon BRAF inhibitor treatment. Adv Healthc Mater 11(7):e2101592. https://doi.org/10.1002/adhm.202101592

23. Xue RP, Behera P, Xu J et al (2014) Polydimethylsiloxane core–polycaprolactone shell nanofibers as biocompatible, real-time oxygen sensors. Sensor Actuat B Chem 192:697–707. https://doi.org/10.1016/j.snb.2013.10.084

24. Xue RP, Ge C, Richardson K et al (2015) Microscale sensing of oxygen via encapsulated porphyrin nanofibers: effect of indicator and polymer “core” permeability. ACS Appl Mater Interfaces 7(16):8606–8614. https://doi.org/10.1021/acsami.5b00403

25. Bardelli T, Marano C, Briatico Vangosa F (2021) Polydimethylsiloxane crosslinking kinetics: a systematic study on Sylgard184 comparing rheological and thermal approaches. J Appl Polym Sci 138(39):e51013. https://doi.org/10.1002/app.51013

26. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. https://doi.org/10.1038/nmeth.2089

27. Rizzo R, Onesto V, Forciniti S et al (2022) A pH-sensor scaffold for mapping spatiotemporal gradients in three-dimensional in vitro tumour models. Biosens Bioelectron 212:114401. https://doi.org/10.1016/j.bios.2022.114401

28. Onesto V, Forciniti S, Alemanno F et al (2023) Probing single-cell fermentation fluxes and exchange networks via pH-sensing hybrid nanofibers. ACS Nano 17(4):3313–3323. https://doi.org/10.1021/acsnano.2c06114

29. Rizzo R, Onesto V, Morello G et al (2023) pH-sensing hybrid hydrogels for non-invasive metabolism monitoring in tumor spheroids. Mater Today Bio 20:100655. https://doi.org/10.1016/j.mtbio.2023.100655

30. Zeng S, Liu XS, Kafuti YS et al (2023) Fluorescent dyes based on rhodamine derivatives for bioimaging and therapeutics: recent progress, challenges, and prospects. Chem Soc Rev 52(16):5607–5651. https://doi.org/10.1039/d2cs00799a

31. Demas JN, Diemente D, Harris EW (1973) Oxygen quenching of charge-transfer excited states of ruthenum(II) complexes. Evidence for singlet oxygen production. J Am Chem Soc 95(20):6864–6865. https://doi.org/10.1021/ja00801a073

32. Quaranta M, Borisov SM, Klimant I (2012) Indicators for optical oxygen sensors. Bioanal Rev 4(2–4):115–157. https://doi.org/10.1007/s12566-012-0032-y

33. Gehlen MH (2020) The centenary of the Stern–Volmer equation of fluorescence quenching: from the single line plot to the SV quenching map. J Photochem Photobiol C Photochem Rev 42:100338. https://doi.org/10.1016/j.jphotochemrev.2019.100338

34. Amao Y (2003) Probes and polymers for optical sensing of oxygen. Microchim Acta 143(1):1–12. https://doi.org/10.1007/s00604-003-0037-x

35. Yang DY, Liu X, Jin Y et al (2009) Electrospinning of poly(dimethylsiloxane)/poly(methyl methacrylate) nanofibrous membrane: fabrication and application in protein microarrays. Biomacromolecules 10(12):3335–3340. https://doi.org/10.1021/bm900955p

36. Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554. https://doi.org/10.1021/ac0346712

37. Berean K, Ou JZ, Nour M et al (2014) The effect of crosslinking temperature on the permeability of PDMS membranes: evidence of extraordinary CO2 and CH4 gas permeation. Sep Purif Technol 122:96–104. https://doi.org/10.1016/j.seppur.2013.11.006

38. Huang XL, Song JB, Yung BC et al (2018) Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 47(8):2873–2920. https://doi.org/10.1039/C7CS00612H

39. Pei XY, Pan Y, Zhang LC et al (2021) Recent advances in ratiometric luminescence sensors. Appl Spectrosc Rev 56(4):324–345. https://doi.org/10.1080/05704928.2020.1793770

40. Riaz U, Ashraf SM (2014) Characterization of polymer blends with FTIR spectroscopy. In: Thomas S, Grohens Y, Jyotishkumar P (Eds.), Characterization of Polymer Blends. Wiley, Hoboken, p.625–678. https://doi.org/10.1002/9783527645602.ch20

41. Fiore T, Pellerito C (2021) Infrared absorption spectroscopy. In: Simonpietro A (Ed.), Spectroscopy for Materials Characterization. Wiley, Hoboken, p 129–167. https://doi.org/10.1002/9781119698029.ch5

42. Gupta NS, Lee KS, Labouriau A (2021) Tuning thermal and mechanical properties of polydimethylsiloxane with carbon fibers. Polymers 13(7):1141. https://doi.org/10.3390/polym13071141

43. Guarino V, Gentile G, Sorrentino L et al (2017) Polycaprolactone: synthesis, properties, and applications. In: Mark HF (Ed.), Encyclopedia of Polymer Science and Technology. Wiley, Hoboken, p.1–36. https://doi.org/10.1002/0471440264.pst658

44. Wang Y, Cai YB, Zhang H et al (2021) Mechanical and thermal degradation behavior of high-performance PDMS elastomer based on epoxy/silicone hybrid network. Polymer 236:124299. https://doi.org/10.1016/j.polymer.2021.124299

45. Niemczyk-Soczynska B, Gradys A, Sajkiewicz P (2020) Hydrophilic surface functionalization of electrospun nanofibrous scaffolds in tissue engineering. Polymers 12(11):2636. https://doi.org/10.3390/polym12112636

46. Zupančič Š (2019) Core-shell nanofibers as drug delivery systems. Acta Pharm 69(2):131–153. https://doi.org/10.2478/acph-2019-0014

47. Fuller ZJ, Bare WD, Kneas KA et al (2003) Photostability of luminescent ruthenium(II) complexes in polymers and in solution. Anal Chem 75(11):2670–2677. https://doi.org/10.1021/ac0261707


关于本刊

Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,2023年公布的最新影响因子为7.9,位列JCR的Q1区,14/96,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区。


初审迅速:初审快速退稿,不影响作者投其它期刊。

审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。

收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。

文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。


期刊主页:

http://www.springer.com/journal/42242

http://www.jzus.zju.edu.cn/ (国内可下载全文)

在线投稿地址:

http://www.editorialmanager.com/bdmj/default.aspx


入群交流

围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码

生物设计与制造BDM
论文导读、领域资讯
 最新文章