内容简介
本综述论文聚焦于神经再生支架制造及3D打印神经再生支架的最新发展趋势和相关研究进展。神经再生对于治疗严重影响人类健康的骨科及神经系统疾病领域至关重要,其再生过程涉及各种细胞类型和信号通路之间复杂的相互作用。与手术和药物治疗相比,3D打印技术可以制造各种尺寸和形状的复杂结构支架和导管。3D打印还可以构建神经模型模仿神经的结构特性,有助于研究人员研究疾病机制和开发新疗法。3D打印支架虽然可实现高度仿生,但仍难以匹配复杂的神经环境。3D打印技术结合多种生物材料和药物,可以加速神经系统的病理研究和临床治疗,有望推动神经再生领域的发展与应用。文章在介绍基于3D打印技术构建神经再生支架的生物材料的基础上,系统阐述和分析如何提高支架神经再生能力和研发策略。
引用本文(点击最下方阅读原文可下载PDF)
He J, Qiao L, Li J, et al., 2024. Advanced strategies for 3D-printed neural scaffolds: materials, structure, and nerve remodeling. Bio-des Manuf 7(5):747–770. https://doi.org/10.1007/s42242-024-00291-5
文章导读
图1 神经再生支架的设计策略与构建方式
图2 3D打印技术制备的神经再生支架
图3 自体神经移植材料构建的3D神经再生支架
图4 3D打印神经支架促进周围神经再生
图5 促进骨修复的3D 打印神经支架
参考文献
上下滑动以阅览
1. Wang Z, Kapadia W, Li CD et al (2021) Tissue-specific engineering: 3D bioprinting in regenerative medicine. J Contr Release 329:237–256. https://doi.org/10.1016/j.jconrel.2020.11.044
2. Xue W, Shi W, Kong YF et al (2021) Anisotropic scaffolds for peripheral nerve and spinal cord regeneration. Bioact Mater 6(11):4141–4160. https://doi.org/10.1016/j.bioactmat.2021.04.019
3. Qian Y, Lin H, Yan ZW et al (2021) Functional nanomaterials in peripheral nerve regeneration: scaffold design, chemical principles and microenvironmental remodeling. Mater Today 51:165–187. https://doi.org/10.1016/j.mattod.2021.09.014
4. Li Y, Ma ZJ, Ren Y et al (2021) Tissue engineering strategies for peripheral nerve regeneration. Front Neurol 12:768267. https://doi.org/10.3389/fneur.2021.768267
5. Varadarajan SG, Hunyara JL, Hamilton NR et al (2022) Central nervous system regeneration. Cell 185(1):77–94. https://doi.org/10.1016/j.cell.2021.10.029
6. Vijayavenkataraman S (2020) Nerve guide conduits for peripheral nerve injury repair: a review on design, materials and fabrication methods. Acta Biomater 106:54–69. https://doi.org/10.1016/j.actbio.2020.02.003
7. Petcu EB, Midha R, McColl E et al (2018) 3D printing strategies for peripheral nerve regeneration. Biofabrication 10(3):032001. https://doi.org/10.1088/1758-5090/aaaf50
8. Liu K, Yan L, Li RT et al (2022) 3D printed personalized nerve guide conduits for precision repair of peripheral nerve defects. Adv Sci 9(12):e2103875. https://doi.org/10.1002/advs.202103875
9. Hu XL, Zhao WM, Zhang Z et al (2023) Novel 3D printed shape-memory PLLA-TMC/GA-TMC scaffolds for bone tissue engineering with the improved mechanical properties and degradability. Chin Chem Lett 34(1):107451. https://doi.org/10.1016/j.cclet.2022.04.049
10. Colucci-D’Amato L, Speranza L, Volpicelli F (2020) Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int J Mol Sci 21(20):7777. https://doi.org/10.3390/ijms21207777
11. Pietrasik S, Cichon N, Bijak M et al (2022) Carotenoids from marine sources as a new approach in neuroplasticity enhancement. Int J Mol Sci 23(4):1990. https://doi.org/10.3390/ijms23041990
12. Hsieh FY, Hsu SH (2015) 3D bioprinting: a new insight into the therapeutic strategy of neural tissue regeneration. Organogenesis 11(4):153–158. https://doi.org/10.1080/15476278.2015.1123360
13. Hu XL, Li H, Qiao L et al (2023) Fabrication of 3D gel-printed beta-tricalcium phosphate/titanium dioxide porous scaffolds for cancellous bone tissue engineering. Int J Bioprint 9(2):369–379. https://doi.org/10.18063/ijb.v9i2.673
14. Lee SJ, Esworthy T, Stake S et al (2018) Advances in 3D bioprinting for neural tissue engineering. Adv Biosyst 2(4):18. https://doi.org/10.1002/adbi.201700213
15. Yan Q, Dong HH, Su J et al (2018) A review of 3D printing technology for medical applications. Engineering 4(5):729–742. https://doi.org/10.1016/j.eng.2018.07.021
16. Bedir T, Ulag S, Ustundag CB et al (2020) 3D bioprinting applications in neural tissue engineering for spinal cord injury repair. Mater Sci Eng C Mater Biol Appl 110:110741. https://doi.org/10.1016/j.msec.2020.110741
17. Maiti B, Diaz DD (2018) 3D printed polymeric hydrogels for nerve regeneration. Polymers 10(9):1041. https://doi.org/10.3390/polym10091041
18. Singh A, Asikainen S, Teotia AK et al (2018) Biomimetic photocurable three-dimensional printed nerve guidance channels with aligned cryomatrix lumen for peripheral nerve regeneration. ACS Appl Mater Interfaces 10(50):43327–43342. https://doi.org/10.1021/acsami.8b11677
19. Wu J, Xie LL, Lin WZY et al (2017) Biomimetic nanofibrous scaffolds for neural tissue engineering and drug development. Drug Discov Today 22(9):1375–1384. https://doi.org/10.1016/j.drudis.2017.03.007
20. Ghosal K, Augustine R, Zaszczynska A et al (2021) Novel drug delivery systems based on triaxial electrospinning based nanofibers. React Funct Polym 163:104895. https://doi.org/10.1016/j.reactfunctpolym.2021.104895
21. Ghorbani S, Tiraihi T, Soleimani M (2018) Differentiation of mesenchymal stem cells into neuron-like cells using composite 3D scaffold combined with valproic acid induction. J Biomater Appl 32(6):702–715. https://doi.org/10.1177/0885328217741903
22. Rahimzadegan M, Mohammadi Q, Shafieian M et al (2022) Influence of reducing agents on in situ synthesis of gold nanoparticles and scaffold conductivity with emphasis on neural differentiation. Biomater Adv 134:112634. https://doi.org/10.1016/j.msec.2021.112634
23. Keirouz A, Wang Z, Reddy VS et al (2023) The history of electrospinning: past, present, and future developments. Adv Mater Technol 8(11):2201723. https://doi.org/10.1002/admt.202201723
24. Puhl DL, Funnell JL, Nelson DW et al (2020) Electrospun fiber scaffolds for engineering glial cell behavior to promote neural regeneration. Bioengineering 8(1):4. https://doi.org/10.3390/bioengineering8010004
25. Dong XZ, Wu P, Yan L et al (2022) Oriented nanofibrous P(MMD-co-LA)/deferoxamine nerve scaffold facilitates peripheral nerve regeneration by regulating macrophage phenotype and revascularization. Biomaterials 280:121288. https://doi.org/10.1016/j.biomaterials.2021.121288
26. Rao F, Yuan ZP, Li M et al (2019) Expanded 3D nanofibre sponge scaffolds by gas-foaming technique enhance peripheral nerve regeneration. Artif Cells Nanomed Biotechnol 47(1):491–500. https://doi.org/10.1080/21691401.2018.1557669
27. Johnson BN, Mcalpine MC (2016) From print to patient: 3D-printed personalized nerve regeneration. Biochemist 38(4):28–31. https://doi.org/10.1042/bio03804028
28. Zhang L, Yang GJ, Johnson BN et al (2019) Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater 84:16–33. https://doi.org/10.1016/j.actbio.2018.11.039
29. Zhang LL, Zheng TT, Wu LL et al (2021) Fabrication and characterization of 3D-printed gellan gum/starch composite scaffold for Schwann cells growth. Nanotechnol Rev 10(1):50–61. https://doi.org/10.1515/ntrev-2021-0004
30. Li Y, Cao X, Deng WW et al (2021) 3D printable sodium alginate-Matrigel (SA-MA) hydrogel facilitated ectomesenchymal stem cells (EMSCs) neuron differentiation. J Biomater Appl 35(6):709–719. https://doi.org/10.1177/0885328220961261
31. Song SS, Liu XY, Huang J (2022) Neural stem cell-laden 3D bioprinting of polyphenol-doped electroconductive hydrogel scaffolds for enhanced neuronal differentiation. Biomater Adv 133:112639. https://doi.org/10.1016/j.msec.2021.112639
32. Huang BY, Vyas C, Roberts I et al (2019) Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration. Mater Sci Eng C Mater Biol Appl 98:266–278. https://doi.org/10.1016/j.msec.2018.12.100
33. Lee SJ, Zhu W, Nowicki M et al (2018) 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. J Neural Eng 15(1):016018. https://doi.org/10.1088/1741-2552/aa95a5
34. Poongodi R, Chen YL, Yang TH et al (2021) Bio-scaffolds as cell or exosome carriers for nerve injury repair. Int J Mol Sci 22(24):13347. https://doi.org/10.3390/ijms222413347
35. Mneimneh AT, Mehanna MM (2021) Collagen-based scaffolds: an auspicious tool to support repair, recovery, and regeneration post spinal cord injury. Int J Pharm 601:120559. https://doi.org/10.1016/j.ijpharm.2021.120559
36. Sun Y, Yang C, Zhu X et al (2019) 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury. J Biomed Mater Res A 107(9):1898–1908. https://doi.org/10.1002/jbm.a.36675
37. Liu XY, Zhang GJ, Wei P et al (2022) Three-dimensional-printed collagen/chitosan/secretome derived from HUCMSCs scaffolds for efficient neural network reconstruction in canines with traumatic brain injury. Regen Biomater 9:rbac043. https://doi.org/10.1093/rb/rbac043
38. Jiang JP, Liu XY, Chen H et al (2020) 3D printing collagen/heparin sulfate scaffolds boost neural network reconstruction and motor function recovery after traumatic brain injury in canine. Biomater Sci 8(22):6362–6374. https://doi.org/10.1039/d0bm01116a
39. Chen C, Zhao ML, Zhang RK et al (2017) Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats. J Biomed Mater Res A 105(5):1324–1332. https://doi.org/10.1002/jbm.a.36011
40. Zhou X, Cui HT, Nowicki M et al (2018) Three-dimensional-bioprinted dopamine-based matrix for promoting neural regeneration. ACS Appl Mater Interfaces 10(10):8993–9001. https://doi.org/10.1021/acsami.7b18197
41. Chen JL, Huang D, Wang L et al (2020) 3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation. J Colloid Interface Sci 574:162–173. https://doi.org/10.1016/j.jcis.2020.04.040
42. Naghieh S, Sarker MD, Abelseth E et al (2019) Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications. J Mech Behav Biomed Mater 93:183–193. https://doi.org/10.1016/j.jmbbm.2019.02.014
43. Wu ZX, Li Q, Xie S et al (2020) In vitro and in vivo biocompatibility evaluation of a 3D bioprinted gelatin-sodium alginate/rat Schwann-cell scaffold. Mater Sci Eng C 109:110530. https://doi.org/10.1016/j.msec.2019.110530
44. Li GC, Han Q, Lu PJ et al (2020) Construction of dual-biofunctionalized chitosan/collagen scaffolds for simultaneous neovascularization and nerve regeneration. Research 2020:2603048. https://doi.org/10.34133/2020/2603048
45. Limongi T, Rocchi A, Cesca F et al (2018) Delivery of brain-derived neurotrophic factor by 3D biocompatible polymeric scaffolds for neural tissue engineering and neuronal regeneration. Mol Neurobiol 55(12):8788–8798. https://doi.org/10.1007/s12035-018-1022-z
46. Wang YT, Zhang YP, Zhang ZY et al (2020) An injectable high-conductive bimaterial scaffold for neural stimulation. Colloids Surf B Biointerfaces 195:111210. https://doi.org/10.1016/j.colsurfb.2020.111210
47. Zhang J, Zhang X, Wang CY et al (2021) Conductive composite fiber with optimized alignment guides neural regeneration under electrical stimulation. Adv Healthc Mater 10(3):e2000604. https://doi.org/10.1002/adhm.202000604
48. Zhao YH, Liang YY, Ding SP et al (2020) Application of conductive PPy/SF composite scaffold and electrical stimulation for neural tissue engineering. Biomaterials 255:120164. https://doi.org/10.1016/j.biomaterials.2020.120164
49. Vijayavenkataraman S, Kannan S, Cao T et al (2019) 3D-printed PCL/PPy conductive scaffolds as three-dimensional porous nerve guide conduits (NGCs) for peripheral nerve injury repair. Front Bioeng Biotechnol 7:266. https://doi.org/10.3389/fbioe.2019.00266
50. Cheng Y, Xu Y, Qian Y et al (2020) 3D structured self-powered PVDF/PCL scaffolds for peripheral nerve regeneration. Nano Energy 69:104411. https://doi.org/10.1016/j.nanoen.2019.104411
51. Badea A, McCracken JM, Tillmaand EG et al (2017) 3D-printed pHEMA materials for topographical and biochemical modulation of dorsal root ganglion cell response. ACS Appl Mater Interfaces 9(36):30318–30328. https://doi.org/10.1021/acsami.7b06742
52. Dong M, Shi B, Liu D et al (2020) Conductive hydrogel for a photothermal-responsive stretchable artificial nerve and coalescing with a damaged peripheral nerve. ACS Nano 14(12):16565–16575. https://doi.org/10.1021/acsnano.0c05197
53. Vlăsceanu GM, Iovu H, Ioniţă M (2019) Graphene inks for the 3D printing of cell culture scaffolds and related molecular arrays. Compos Part B Eng 162:712–723. https://doi.org/10.1016/j.compositesb.2019.01.010
54. Gasparotto M, Bellet P, Scapin G et al (2022) 3D printed graphene-PLA scaffolds promote cell alignment and differentiation. Int J Mol Sci 23(3):1736. https://doi.org/10.3390/ijms23031736
55. Guo RR, Li J, Chen CT et al (2021) Biomimetic 3D bacterial cellulose-graphene foam hybrid scaffold regulates neural stem cell proliferation and differentiation. Colloids Surf B Biointerfaces 200:111590. https://doi.org/10.1016/j.colsurfb.2021.111590
56. Wang J, Wang HY, Mo XM et al (2020) Reduced graphene oxide-encapsulated microfiber patterns enable controllable formation of neuronal-like networks. Adv Mater 32(40):e2004555. https://doi.org/10.1002/adma.202004555
57. Kuzmenko V, Karabulut E, Pernevik E et al (2018) Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines. Carbohydr Polym 189:22–30. https://doi.org/10.1016/j.carbpol.2018.01.097
58. Keshavarz M, Wales DJ, Seichepine F et al (2020) Induced neural stem cell differentiation on a drawn fiber scaffold-toward peripheral nerve regeneration. Biomed Mater 15(5):055011. https://doi.org/10.1088/1748-605X/ab8d12
59. Alblawi A, Ranjani AS, Yasmin H et al (2020) Scaffold-free: a developing technique in field of tissue engineering. Comput Methods Prog Biomed 185:105148. https://doi.org/10.1016/j.cmpb.2019.105148
60. Mitsuzawa S, Ikeguchi R, Aoyama T et al (2019) The efficacy of a scaffold-free bio 3D conduit developed from autologous dermal fibroblasts on peripheral nerve regeneration in a canine ulnar nerve injury model: a preclinical proof-of-concept study. Cell Transplant 28(9–10):1231–1241. https://doi.org/10.1177/0963689719855346
61. Takeuchi H, Ikeguchi R, Aoyama T et al (2020) A scaffold-free bio 3D nerve conduit for repair of a 10-mm peripheral nerve defect in the rats. Microsurgery 40(2):207–216. https://doi.org/10.1002/micr.30533
62. dos Santos FP, Peruch T, Katami SJV et al (2019) Poly (lactide-co-glycolide) (PLGA) scaffold induces short-term nerve regeneration and functional recovery following sciatic nerve transection in rats. Neuroscience 396:94–107. https://doi.org/10.1016/j.neuroscience.2018.11.007
63. Zhang QZ, Nguyen PD, Shi SH et al (2018) 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration. Sci Rep 8(1):6634. https://doi.org/10.1038/s41598-018-24888-w
64. Kong Y, Xu JW, Han Q et al (2022) Electrospinning porcine decellularized nerve matrix scaffold for peripheral nerve regeneration. Int J Biol Macromol 209(Pt B):1867–1881. https://doi.org/10.1016/j.ijbiomac.2022.04.161
65. Mobini S, Spearman BS, Lacko CS et al (2017) Recent advances in strategies for peripheral nerve tissue engineering. Curr Opin Biomed Eng 4:134–142. https://doi.org/10.1016/j.cobme.2017.10.010
66. Soman SS, Vijayavenkataraman S (2020) Perspectives on 3D bioprinting of peripheral nerve conduits. Int J Mol Sci 21(16):5792. https://doi.org/10.3390/ijms21165792
67. Li Y, Lv S, Yuan HP et al (2021) Peripheral nerve regeneration with 3D printed bionic scaffolds loading neural crest stem cell derived Schwann cell progenitors. Adv Funct Mater 31(16):16. https://doi.org/10.1002/adfm.202010215
68. Lacko CS, Singh I, Wall MA et al (2020) Magnetic particle templating of hydrogels: engineering naturally derived hydrogel scaffolds with 3D aligned microarchitecture for nerve repair. J Neural Eng 17(1):016057. https://doi.org/10.1088/1741-2552/ab4a22
69. Yan ZW, Qian Y, Fan CY (2021) Biomimicry in 3D printing design: implications for peripheral nerve regeneration. Regen Med 16(7):683–701. https://doi.org/10.2217/rme-2020-0182
70. Huang YL, Wu WB, Liu HF et al (2021) 3D printing of functional nerve guide conduits. Burns Trauma 9:tkab011. https://doi.org/10.1093/burnst/tkab011
71. Ye WS, Li HB, Yu K et al (2020) 3D printing of gelatin methacrylate-based nerve guidance conduits with multiple channels. Mater Des 192:108757. https://doi.org/10.1016/j.matdes.2020.108757
72. Chen CC, Yu J, Ng HY et al (2018) The physicochemical properties of decellularized extracellular matrix-coated 3D printed poly(epsilon-caprolactone) nerve conduits for promoting Schwann cells proliferation and differentiation. Materials 11(9):1165. https://doi.org/10.3390/ma11091665
73. Vijayavenkataraman S, Zhang S, Thaharah S et al (2018) Electrohydrodynamic jet 3D printed nerve guide conduits (NGCs) for peripheral nerve injury repair. Polymers 10(7):753. https://doi.org/10.3390/polym10070753
74. Vijayavenkataraman S, Thaharah S, Zhang S et al (2019) Electrohydrodynamic jet 3D-printed PCL/PAA conductive scaffolds with tunable biodegradability as nerve guide conduits (NGCs) for peripheral nerve injury repair. Mater Des 162:171–184. https://doi.org/10.1016/j.matdes.2018.11.044
75. Vijayavenkataraman S, Thaharah S, Zhang S et al (2019) 3D-printed PCL/rGO conductive scaffolds for peripheral nerve injury repair. Artif Organs 43(5):515–523. https://doi.org/10.1111/aor.13360
76. Uz M, Donta M, Mededovic M et al (2019) Development of gelatin and graphene-based nerve regeneration conduits using three-dimensional (3D) printing strategies for electrical transdifferentiation of mesenchymal stem cells. Ind Eng Chem Res 58(18):7421–7427. https://doi.org/10.1021/acs.iecr.8b05537
77. Park J, Jeon J, Kim B et al (2020) Electrically conductive hydrogel nerve guidance conduits for peripheral nerve regeneration. Adv Funct Mater 30(39):14. https://doi.org/10.1002/adfm.202003759
78. Qian Y, Wang X, Song JL et al (2021) Preclinical assessment on neuronal regeneration in the injury-related microenvironment of graphene-based scaffolds. Regen Med 6(1):31. https://doi.org/10.1038/s41536-021-00142-2
79. Lee SJ, Zhu W, Heyburn L et al (2017) Development of novel 3-D printed scaffolds with core-shell nanoparticles for nerve regeneration. IEEE Trans Biomed Eng 64(2):408–418. https://doi.org/10.1109/TBME.2016.2558493
80. Zhang JM, Chen YW, Huang YL et al (2020) A 3D-printed self-adhesive bandage with drug release for peripheral nerve repair. Adv Sci 7(23):2002601. https://doi.org/10.1002/advs.202002601
81. Tao J, Zhang JM, Du T et al (2019) Rapid 3D printing of functional nanoparticle-enhanced conduits for effective nerve repair. Acta Biomater 90:49–59. https://doi.org/10.1016/j.actbio.2019.03.047
82. Wang YF, Yan ZW, Liu WJ et al (2022) Biomechanically-adapted immunohydrogels reconstructing myelin sheath for peripheral nerve regeneration. Adv Healthc Mater 11(20):e2201596. https://doi.org/10.1002/adhm.202201596
83. Dong XH, Liu SY, Yang YY et al (2021) Aligned microfiber-induced macrophage polarization to guide Schwann-cell-enabled peripheral nerve regeneration. Biomaterials 272:120767. https://doi.org/10.1016/j.biomaterials.2021.120767
84. Qian Y, Han QX, Zhao XT et al (2018) 3D melatonin nerve scaffold reduces oxidative stress and inflammation and increases autophagy in peripheral nerve regeneration. J Pineal Res 65(4):e12516. https://doi.org/10.1111/jpi.12516
85. Xi K, Gu Y, Tang JC et al (2020) Microenvironment-responsive immunoregulatory electrospun fibers for promoting nerve function recovery. Nat Commun 11(1):4504. https://doi.org/10.1038/s41467-020-18265-3
86. Yuan X, Yuan WH, Ding L et al (2021) Cell-adaptable dynamic hydrogel reinforced with stem cells improves the functional repair of spinal cord injury by alleviating neuroinflammation. Biomaterials 279:121190. https://doi.org/10.1016/j.biomaterials.2021.121190
87. Shen H, Xu B, Yang C et al (2022) A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury. Biomaterials 280:121279. https://doi.org/10.1016/j.biomaterials.2021.121279
88. Wang YC, Tan H, Hui XH (2018) Biomaterial scaffolds in regenerative therapy of the central nervous system. BioMed Res Int 2018:7848901. https://doi.org/10.1155/2018/7848901
89. Liu S, Yang H, Chen D et al (2022) Three-dimensional bioprinting sodium alginate/gelatin scaffold combined with neural stem cells and oligodendrocytes markedly promoting nerve regeneration after spinal cord injury. Regen Biomater 9:rbac038. https://doi.org/10.1093/rb/rbac038
90. Koffler J, Zhu W, Qu X et al (2019) Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med 25(2):263–269. https://doi.org/10.1038/s41591-018-0296-z
91. Gao C, Li YX, Liu XY et al (2023) 3D bioprinted conductive spinal cord biomimetic scaffolds for promoting neuronal differentiation of neural stem cells and repairing of spinal cord injury. Chem Eng J 451(Part 3):138788. https://doi.org/10.1016/j.cej.2022.138788
92. Liu XY, Song SS, Chen ZJ et al (2022) Release of O-GlcNAc transferase inhibitor promotes neuronal differentiation of neural stem cells in 3D bioprinted supramolecular hydrogel scaffold for spinal cord injury repair. Acta Biomater 151:148–162. https://doi.org/10.1016/j.actbio.2022.08.031
93. Liu XY, Hao MM, Chen ZJ et al (2021) 3D bioprinted neural tissue constructs for spinal cord injury repair. Biomaterials 272:120771. https://doi.org/10.1016/j.biomaterials.2021.120771
94. Joung D, Truong V, Neitzke CC et al (2018) 3D printed stem-cell derived neural progenitors generate spinal cord scaffolds. Adv Funct Mater 28(39):1870283. https://doi.org/10.1002/adfm.201801850
95. Liu XY, Chen C, Xu HH et al (2021) Integrated printed BDNF/collagen/chitosan scaffolds with low temperature extrusion 3D printer accelerated neural regeneration after spinal cord injury. Regen Biomater 8(6):rbab047. https://doi.org/10.1093/rb/rbab047
96. Hu XL, Lin ZD, He J et al (2022) Recent progress in 3D printing degradable polylactic acid-based bone repair scaffold for the application of cancellous bone defect. MedComm-Biomater Appl 1(1):e14. https://doi.org/10.1002/mba2.14
97. Fitzpatrick V, Martin-Moldes Z, Deck A et al (2021) Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials 276:120995. https://doi.org/10.1016/j.biomaterials.2021.120995
98. Hsiao D, Hsu SH, Chen RS et al (2020) Characterization of designed directional polylactic acid 3D scaffolds for neural differentiation of human dental pulp stem cells. J Formos Med Assoc 119(1 Pt 2):268–275. https://doi.org/10.1016/j.jfma.2019.05.011
99. Zhang XW, Zhang H, Zhang Y et al (2023) 3D printed reduced graphene oxide-GelMA hybrid hydrogel scaffolds for potential neuralized bone regeneration. J Mater Chem B 11(6):1288–1301. https://doi.org/10.1039/d2tb01979e
100. Ma YX, Jiao K, Wan QQ et al (2022) Silicified collagen scaffold induces semaphorin 3A secretion by sensory nerves to improve in-situ bone regeneration. Bioact Mater 9:475–490. https://doi.org/10.1016/j.bioactmat.2021.07.016
101. Raoofi A, Sadeghi Y, Piryaei A et al (2021) Bone marrow mesenchymal stem cell condition medium loaded on PCL nanofibrous scaffold promoted nerve regeneration after sciatic nerve transection in male rats. Neurotox Res 39(5):1470–1486. https://doi.org/10.1007/s12640-021-00391-5
102. Rey F, Barzaghini B, Nardini A et al (2020) Advances in tissue engineering and innovative fabrication techniques for 3-D-structures: translational applications in neurodegenerative diseases. Cells 9(7):1636. https://doi.org/10.3390/cells9071636
103. Qiu BN, Bessler N, Figler K et al (2020) Bioprinting neural systems to model central nervous system diseases. Adv Funct Mater 30(44):1910250. https://doi.org/10.1002/adfm.201910250
104. Venkataraman L, Fair SR, McElroy CA et al (2022) Modeling neurodegenerative diseases with cerebral organoids and other three-dimensional culture systems: focus on Alzheimer’s disease. Stem Cell Rev Rep 18(2):696–717. https://doi.org/10.1007/s12015-020-10068-9
105. Adine C, Ng KK, Rungarunlert S et al (2018) Engineering innervated secretory epithelial organoids by magnetic three-dimensional bioprinting for stimulating epithelial growth in salivary glands. Biomaterials 180:52–66. https://doi.org/10.1016/j.biomaterials.2018.06.011
106. Bordoni M, Rey F, Fantini V et al (2018) From neuronal differentiation of iPSCs to 3D neuro-organoids: modelling and therapy of neurodegenerative diseases. Int J Mol Sci 19(12):3972. https://doi.org/10.3390/ijms19123972
107. Tasnim N, Thakur V, Chattopadhyay M et al (2018) The efficacy of graphene foams for culturing mesenchymal stem cells and their differentiation into dopaminergic neurons. Stem Cells Int 2018:3410168. https://doi.org/10.1155/2018/3410168
108. Bordoni M, Karabulut E, Kuzmenko V et al (2020) 3D printed conductive nanocellulose scaffolds for the differentiation of human neuroblastoma cells. Cells 9(3):682. https://doi.org/10.3390/cells9030682
109. Annaji M, Ramesh S, Poudel I et al (2020) Application of extrusion-based 3D printed dosage forms in the treatment of chronic diseases. J Pharm Sci 109(12):3551–3568. https://doi.org/10.1016/j.xphs.2020.09.042
110. Joung D, Lavoie NS, Guo SZ et al (2020) 3D printed neural regeneration devices. Adv Funct Mater 30(1):25. https://doi.org/10.1002/adfm.201906237
111. Dong M, Wang XP, Chen XZ et al (2020) 3D-printed soft magnetoelectric microswimmers for delivery and differentiation of neuron-like cells. Adv Funct Mater 30(17):7. https://doi.org/10.1002/adfm.201910323
112. Liu XX, Yan JN, Liu JY et al (2021) Fabrication of a dual-layer cell-laden tubular scaffold for nerve regeneration and bile duct reconstruction. Biofabrication 13(3):15. https://doi.org/10.1088/1758-5090/abf995
113. Zhu W, George JK, Sorger VJ et al (2017) 3D printing scaffold coupled with low level light therapy for neural tissue regeneration. Biofabrication 9(2):025002. https://doi.org/10.1088/1758-5090/aa6999
114. Zheng N, Fitzpatrick V, Cheng R et al (2022) Photoacoustic carbon nanotubes embedded silk scaffolds for neural stimulation and regeneration. ACS Nano 16(2):2292–2305. https://doi.org/10.1021/acsnano.1c08491
115. Wong DY, Krebsbach PH, Hollister SJ (2008) Brain cortex regeneration affected by scaffold architectures. J Neurosurg 109(4):715–722. https://doi.org/10.3171/JNS/2008/109/10/0715
116. Huang LL, Gao JB, Wang HR et al (2020) Fabrication of 3D scaffolds displaying biochemical gradients along longitudinally oriented microchannels for neural tissue engineering. ACS Appl Mater Interfaces 12(43):48380–48394. https://doi.org/10.1021/acsami.0c15185
117. Huang LL, Zhu L, Shi XW et al (2018) A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Acta Biomater 68:223–236. https://doi.org/10.1016/j.actbio.2017.12.010
118. Kaplan B, Merdler U, Szklanny AA et al (2020) Rapid prototyping fabrication of soft and oriented polyester scaffolds for axonal guidance. Biomaterials 251:120062. https://doi.org/10.1016/j.biomaterials.2020.120062
119. Espinosa-Hoyos D, Jagielska A, Homan KA et al (2018) Engineered 3D-printed artificial axons. Sci Rep 8(1):478. https://doi.org/10.1038/s41598-017-18744-6
120. Li XR, Chen ZN, Zhang HM et al (2019) Aligned scaffolds with biomolecular gradients for regenerative medicine. Polymers 11(2):341. https://doi.org/10.3390/polym11020341
121. Yao Z, Yan LW, Qiu S et al (2019) Customized scaffold design based on natural peripheral nerve fascicle characteristics for biofabrication in tissue regeneration. Biomed Res Int 2019:3845780. https://doi.org/10.1155/2019/3845780
122. Shahriari D, Loke G, Tafel I et al (2019) Scalable fabrication of porous microchannel nerve guidance scaffolds with complex geometries. Adv Mater 31(30):e1902021. https://doi.org/10.1002/adma.201902021
123. Li JM, Gao W (2018) Fabrication and characterization of 3D microtubular collagen scaffolds for peripheral nerve repair. J Biomater Appl 33(4):541–552. https://doi.org/10.1177/0885328218804338
124. Zhu W, Tringale KR, Woller SA et al (2018) Rapid continuous 3D printing of customizable peripheral nerve guidance conduits. Mater Today 21(9):951–959. https://doi.org/10.1016/j.mattod.2018.04.001
125. Gong LL, Cao LN, Shen ZM et al (2018) Materials for neural differentiation, trans-differentiation, and modeling of neurological disease. Adv Mater 30(17):e1705684. https://doi.org/10.1002/adma.201705684
126. Lambrichts I, Driesen RB, Dillen Y et al (2017) Dental pulp stem cells: their potential in reinnervation and angiogenesis by using scaffolds. J Endod 43(9):S12–S16. https://doi.org/10.1016/j.joen.2017.06.001
127. Ding SSL, Subbiah SK, Khan MSA et al (2019) Empowering mesenchymal stem cells for ocular degenerative disorders. Int J Mol Sci 20(7):1784. https://doi.org/10.3390/ijms20071784
128. Tajdaran K, Chan K, Gordon T et al (2019) Matrices, scaffolds, and carriers for protein and molecule delivery in peripheral nerve regeneration. Exp Neurol 319:112817. https://doi.org/10.1016/j.expneurol.2018.08.014
129. Hsu CC, George JH, Waller S et al (2022) Increased connectivity of hiPSC-derived neural networks in multiphase granular hydrogel scaffolds. Bioact Mater 9:358–372. https://doi.org/10.1016/j.bioactmat.2021.07.008
130. Sultan MT, Choi BY, Ajiteru O et al (2021) Reinforced-hydrogel encapsulated hMSCs towards brain injury treatment by trans-septal approach. Biomaterials 266:120413. https://doi.org/10.1016/j.biomaterials.2020.120413
131. Gui XY, Peng ZY, Song P et al (2023) 3D printing of personalized polylactic acid scaffold laden with GelMA/autologous auricle cartilage to promote ear reconstruction. Bio-Des Manuf 6(4):451–463. https://doi.org/10.1007/s42242-023-00242-6
关于本刊
Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。
初审迅速:初审快速退稿,不影响作者投其它期刊。
审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。
收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。
文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。
期刊主页:
http://www.springer.com/journal/42242
http://www.jzus.zju.edu.cn/ (国内可下载全文)
在线投稿地址:
http://www.editorialmanager.com/bdmj/default.aspx
入群交流
围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码