内容简介
本研究论文聚焦用于组织工程的3D打印电导性pHEMA-co-MAA纳米粒子水凝胶。组织工程(TE)作为一种潜在的解决方案,被广泛探索以满足用于替换病变组织和组织再生的临床需求。在本研究中,我们开发了基于聚(2-羟乙基甲基丙烯酸酯-共-甲基丙烯酸) (pHEMA-co-MAA) 的水凝胶,搭载了新合成的导电聚(3,4-乙二醇二噻吩) (PEDOT) 和聚吡咯 (PPy) 纳米颗粒(NPs),并通过三维(3D)打印将这些水凝胶制成组织工程构件。NPs在墨水中的存在至关重要,因为它们改变了打印过程中的流变性质。所有样品都表现出适当的剪切稀化特性,从而为3D打印窗口的优化提供了可能。样品被3D打印成预先确定的圆盘状构型,其直径为2 mm,高度为10 mm。我们观察到,NPs破坏了凝胶交联效率,导致样品具有较短的降解时间和在450至550 kPa范围内的压缩力学性能。打印水凝胶的导电性随着NP浓度的增加而增加至(5.10±0.37)×10−7 S/cm。与皮质星形胶质细胞培养的体外研究表明,暴露于pHEMA-co-MAA NP水凝胶中可获得较高的细胞存活率和增殖率。最后,与表皮葡萄球菌的水凝胶抗菌研究表明,开发的水凝胶对细菌生长产生了影响。综上,这些材料在各种组织工程策略中都显示出潜力。
引用本文(点击最下方阅读原文可下载PDF)
De Nitto S, Serafin A, Karadimou A, et al., 2024. Development and characterization of 3D-printed electroconductive pHEMA-co-MAA NP-laden hydrogels for tissue engineering. Bio-des Manuf 7(3):262–276. https://doi.org/10.1007/s42242-024-00272-8
文章导读
图1 纳米颗粒合成示意图
图2 pHEMA-co-MAA纳米颗粒水凝胶的体外间接接触实验的示意图
表1 3D打印的pHEMA-co-MAA纳米颗粒样品,控制组和所有带有纳米颗粒的样品每层曝光时间分别为25秒和70秒
图3 在使用pHEMA-co-MAANP水凝胶处理的培养基中培养时,细胞形态学在体外呈现出较佳的活性星形胶质细胞
参考文献
上下滑动以阅览
1. Starzl TE (2000) History of clinical transplantation. World J Surg 24(7):759–782. https://doi.org/10.1007/s002680010124
2. Gulsen D, Chauhan A (2005) Dispersion of microemulsion drops in HEMA hydrogel: a potential ophthalmic drug delivery vehicle. Int J Pharm 292(1):95–117. https://doi.org/10.1016/j.ijpharm.2004.11.033
3. Geckil H, Xu F, Zhang XH et al (2010) Engineering hydrogels as extracellular matrix mimics. Nanomedicine 5(3):469–484. https://doi.org/10.2217/nnm.10.12
4. Montheard JP, Chatzopoulos M, Chappard D (1992) 2-hydroxyethyl methacrylate (HEMA): chemical properties and applications in biomedical fields. J Macromol Sci Part C 32(1):1–34. https://doi.org/10.1080/15321799208018377
5. Fornasiero F, Krull F, Radke CJ et al (2004) Diffusivity of water through a HEMA-based soft contact lens. Fluid Phase Equilib 228–229:269–273. https://doi.org/10.1016/j.fluid.2004.08.020
6. Efron N, Brennan NA, Chalmers RL et al (2020) Thirty years of “quiet eye” with etafilcon A contact lenses. Cont Lens Anterior Eye 43(3):285–297. https://doi.org/10.1016/j.clae.2020.03.015
7. Serafin A, Rubio MC, Carsi M et al (2022) Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair. Biomater Res 26(1):63. https://doi.org/10.1186/s40824-022-00310-5
8. An J, Teoh JEM, Suntornnond R et al (2015) Design and 3D printing of scaffolds and tissues. Engineering 1(2):261–268. https://doi.org/10.15302/J-ENG-2015061
9. Askari M, Afzali Naniz M, Kouhi M et al (2021) Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci 9(3):535–573. https://doi.org/10.1039/d0bm00973c
10. Sahafnejad-Mohammadi I, Rahmati S, Najmoddin N et al (2023) Biomimetic polycaprolactone-graphene oxide composites for 3D printing bone scaffolds. Macromol Mater Eng 308(5):2200558. https://doi.org/10.1002/mame.202200558
11. Noroozi R, Tatar F, Zolfagharian A et al (2022) Additively manufactured multi-morphology bone-like porous scaffolds: experiments and micro-computed tomography-based finite element modeling approaches. Int J Bioprint 8(3):40–56. https://doi.org/10.18063/ijb.v8i3.556
12. Schuldt SJ, Jagoda JA, Hoisington AJ et al (2021) A systematic review and analysis of the viability of 3D-printed construction in remote environments. Automat Constr 125:103642. https://doi.org/10.1016/j.autcon.2021.103642
13. Steel EM, Azar JY, Sundararaghavan HG (2020) Electrospun hyaluronic acid-carbon nanotube nanofibers for neural engineering. Materialia 9:100581. https://doi.org/10.1016/j.mtla.2019.100581
14. Chen MQ, Xie XY, Hollis Whittington R et al (2008) Cardiac differentiation of embryonic stem cells with point-source electrical stimulation. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p.1729–1732. https://doi.org/10.1109/IEMBS.2008.4649510
15. Kuzmenko V, Kalogeropoulos T, Thunberg J et al (2016) Enhanced growth of neural networks on conductive cellulose-derived nanofibrous scaffolds. Mater Sci Eng C Mater Biol Appl 58:14–23. https://doi.org/10.1016/j.msec.2015.08.012
16. McCaig CD, Rajnicek AM, Song B et al (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85(3):943–978. https://doi.org/10.1152/physrev.00020.2004
17. Edwards SL, Werkmeister JA, Ramshaw JA (2009) Carbon nanotubes in scaffolds for tissue engineering. Expert Rev Med Devices 6(5):499–505. https://doi.org/10.1586/erd.09.29
18. Noroozi R, Shamekhi MA, Mahmoudi R et al (2022) In vitro static and dynamic cell culture study of novel bone scaffolds based on 3D-printed PLA and cell-laden alginate hydrogel. Biomed Mater 17(4):045024. https://doi.org/10.1088/1748-605X/ac7308
19. Serafin A, Murphy C, Rubio MC et al (2021) Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering. Mater Sci Eng C 122:111927. https://doi.org/10.1016/j.msec.2021.111927
20. Serafin A, Culebras M, Oliveira JM et al (2023) 3D printable electroconductive gelatin-hyaluronic acid materials containing polypyrrole nanoparticles for electroactive tissue engineering. Adv Compos Hybrid Mater 6(3):109. https://doi.org/10.1007/s42114-023-00665-w
21. Spencer AR, Primbetova A, Koppes AN et al (2018) Electroconductive gelatin methacryloyl-PEDOT:PSS composite hydrogels: design, synthesis, and properties. ACS Biomater Sci Eng 4(5):1558–1567. https://doi.org/10.1021/acsbiomaterials.8b00135
22. Song E, Choi JW (2013) Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 3(3):498–523. https://doi.org/10.3390/nano3030498
23. Mantione D, del Agua I, Sanchez-Sanchez A et al (2017) Poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives: innovative conductive polymers for bioelectronics. Polymers 9(8):354. https://doi.org/10.3390/polym9080354
24. Boni R, Ali A, Shavandi A et al (2018) Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci 25(1):90. https://doi.org/10.1186/s12929-018-0491-8
25. Chiang CW, Chuang EY (2019) Biofunctional core-shell polypyrrole-polyethylenimine nanocomplex for a locally sustained photothermal with reactive oxygen species enhanced therapeutic effect against lung cancer. Int J Nanomed 14:1575–1585. https://doi.org/10.2147/IJN.S163299
26. Saleemi MA, Hosseini Fouladi M, Yong PVC et al (2021) Toxicity of carbon nanotubes: molecular mechanisms, signaling cascades, and remedies in biomedical applications. Chem Res Toxicol 34(1):24–46. https://doi.org/10.1021/acs.chemrestox.0c00172
27. Escobar A, Serafin A, Carvalho MR et al (2023) Electroconductive poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticle-loaded silk fibroin biocomposite conduits for peripheral nerve regeneration. Adv Compos Hybrid Mater 6(3):118. https://doi.org/10.1007/s42114-023-00689-2
28. Yang Y, Deng H, Fu Q (2020) Recent progress on PEDOT:PSS based polymer blends and composites for flexible electronics and thermoelectric devices. Mater Chem Front 4(11):130–152. https://doi.org/10.1039/D0QM00308E
29. Culebras M, Byun Y, Jang J et al (2023) Nanostructured PEDOT-based multilayer thin films with high thermoelectric performances. Appl Surf Sci 615:156432. https://doi.org/10.1016/j.apsusc.2023.156432
30. Shannon A, Guttridge C, O'Sullivan A et al (2024) Comparing digital light processing and stereolithography vat polymerization technologies for antimicrobial 3D printing using silver oxide as an antimicrobial filler. J Appl Polym Sci 141(12):55122. https://doi.org/10.1002/app.55122
31. Şarkaya K, Çadırcı M, Çetin K et al (2023) PHEMA/PPy cytocompatible conductive cryogels: one-pot synthesis, characterization, and electrical properties. Mater Today Commun 35:105791. https://doi.org/10.1016/j.mtcomm.2023.105791
32. Arslantunali D, Budak G, Hasirci V (2014) Multiwalled CNT-pHEMA composite conduit for peripheral nerve repair. J Biomed Mater Res Part A 102(3):828–841. https://doi.org/10.1002/jbm.a.34727
33. Allijn I, Ribeiro M, Poot A et al (2020) Membranes for modelling cardiac tissue stiffness in vitro based on poly(trimethylene carbonate) and poly(ethylene glycol) polymers. Membranes 10(10):274. https://doi.org/10.3390/membranes10100274
34. Karimi A, Shojaei A (2017) Measurement of the mechanical properties of the human kidney. IRBM 38(5):292–297. https://doi.org/10.1016/j.irbm.2017.08.001
35. Tabatabaee S, Baheiraei N, Salehnia M (2022) Fabrication and characterization of PHEMA-gelatin scaffold enriched with graphene oxide for bone tissue engineering. J Orthop Surg Res 17(1):216. https://doi.org/10.1186/s13018-022-03122-4
36. Vargün E, Usanmaz A (2010) Degradation of poly(2-hydroxyethyl methacrylate) obtained by radiation in aqueous solution. J Macromol Sci Part A 47(9):882–891. https://doi.org/10.1080/10601325.2010.501304
37. Rashid H, Ahmad M, Minhas MU et al (2015) Synthesis and characterization of poly(hydroxyethyl methacrylate-co-methacrylic acid) cross linked polymeric network for the delivery of analgesic agent. J Chem Soc Pakistan 37(5):999–1007
38. Liu YZ, Sun D, Askari S et al (2015) Enhanced dispersion of TiO2 nanoparticles in a TiO2/PEDOT:PSS hybrid nanocomposite via plasma-liquid interactions. Sci Rep 5(1):15765. https://doi.org/10.1038/srep15765
39. Liu Y, Chu Y, Yang LK (2006) Adjusting the inner-structure of polypyrrole nanoparticles through microemulsion polymerization. Mater Chem Phys 98(2):304–308. https://doi.org/10.1016/j.matchemphys.2005.09.025
40. Chen Y, Kang GY, Xu H et al (2016) Two composites based on CoMoO4 nanorods and PPy nanoparticles: fabrication, structure and electrochemical properties. Synth Met 215:50–55. https://doi.org/10.1016/j.synthmet.2016.02.006
41. Murphy CM, O’Brien FJ (2010) Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adh Migr 4(3):377–381. https://doi.org/10.4161/cam.4.3.11747
42. Waheed S, Cabot JM, Macdonald NP et al (2016) 3D printed microfluidic devices: enablers and barriers. Lab Chip 16(11):1993–2013. https://doi.org/10.1039/c6lc00284f
43. Zamboni F, Wong CK, Collins MN (2023) Hyaluronic acid association with bacterial, fungal and viral infections: can hyaluronic acid be used as an antimicrobial polymer for biomedical and pharmaceutical applications? Bioact Mater 19:458–473. https://doi.org/10.1016/j.bioactmat.2022.04.023
44. Flynn J, Culebras M, Collins MN et al (2022) The impact of varying dextran oxidation levels on the inhibitory activity of a bacteriocin loaded injectable hydrogel. Drug Deliv Transl Res 13(1):308–319. https://doi.org/10.1007/s13346-022-01201-x
45. Zamboni F, Okoroafor C, Ryan MP et al (2021) On the bacteriostatic activity of hyaluronic acid composite films. Carbohyd Polym 260:117803. https://doi.org/10.1016/j.carbpol.2021.117803
46. Flynn J, Durack E, Collins MN et al (2020) Tuning the strength and swelling of an injectable polysaccharide hydrogel and the subsequent release of a broad spectrum bacteriocin, nisin A. J Mater Chem B 8(18):429–438. https://doi.org/10.1039/d0tb00169d
关于本刊
Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,2023年公布的最新影响因子为7.9,位列JCR的Q1区,14/96,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区。
初审迅速:初审快速退稿,不影响作者投其它期刊。
审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。
收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。
文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。
期刊主页:
http://www.springer.com/journal/42242
http://www.jzus.zju.edu.cn/ (国内可下载全文)
在线投稿地址:
http://www.editorialmanager.com/bdmj/default.aspx
入群交流
围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码