郑州大学刘水任等 | 兼具高灵敏度和宽检测范围的仿贻贝MXene基压力传感器

文摘   2024-08-23 17:14   浙江  

内容简介


本研究论文聚焦兼具高灵敏度和宽检测范围的仿贻贝MXene基压力传感器。作为可穿戴电子设备的重要组成部分,柔性压力传感器因其在健康监测、电子皮肤和人机交互等领域中广阔的应用前景而备受关注。然而,在较宽的压力范围内实现传感器的高灵敏性,同时具备快速的响应/恢复时间和与皮肤无缝贴合,仍然是一个重大挑战。在本文中,我们提出使用真空诱导自组装策略制备具有“砖-砂浆”内部结构的珍珠层状MXene/羧甲基纤维素钠(CMC)纳米复合传感膜。柔性CMC“砂浆”的嵌入有效缓解了MXene导电纳米片的层间堆积,赋予其丰富的可变接触通路,提高了纳米复合材料的力学稳定性,从而实现了传感器在宽压力范围内的高灵敏性(0.03–22.37 kPa: 162.13 kPa−1; 22.37–135.71 kPa: 127.88 kPa−1; 135.71–286.49 kPa: 100.58 kPa−1)。此外,该传感器还具有低检测极限(0.85 Pa)、快速响应/恢复时间(8.58 ms/34.34 ms)和良好的循环稳定性。基于上述传感器的优异性能,我们探究了将其用于区分微小物体、人体生理信号识别,空间阵列、机器人运动监测等应用的可行性。


引用本文(点击最下方阅读原文可下载PDF)

Wang G, Meng L, Ji X, et al., 2024. Nacre-inspired MXene-based film for highly sensitive piezoresistive sensing over a broad sensing range. Bio-des Manuf 7(4): 463–475. https://doi.org/10.1007/s42242-024-00292-4

文章导读



图1 类贻贝结构传感器的制备示意图


图2 传感器的压敏性评估


图3 传感器的工作机理、传感模型及等效电路


图4 传感器用于大压力和微小压力测量应用展示

参考文献

上下滑动以阅览

1. Zhong MJ, Zhang LJ, Liu X et al (2021) Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces. Chem Eng J 412(15):128649. https://doi.org/10.1016/j.cej.2021.128649

2. Shi ZY, Meng LX, Shi XL et al (2022) Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett 14(1):141. https://doi.org/10.1007/s40820-022-00874-w

3. Li MK, Zhang YF, Lian LSY et al (2022) Flexible accelerated-wound-healing antibacterial MXene-based epidermic sensor for intelligent wearable human-machine interaction. Adv Funct Mater 32(47):2208141. https://doi.org/10.1002/adfm.202208141

4. Niu H, Li H, Gao S et al (2022) Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv Mater 34(31):2202622. https://doi.org/10.1002/adma.202202622

5. Fu XY, Wang LL, Zhao LJ et al (2021) Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin. Adv Funct Mater 31(17):2010533. https://doi.org/10.1002/adfm.202010533

6. Ma YN, Cheng YF, Wang J et al (2022) Flexible and highly-sensitive pressure sensor based on controllably oxidized MXene. InfoMat 4(9):e12328. https://doi.org/10.1002/inf2.12328

7. Cheng YF, Ma YN, Li LY et al (2020) Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14(2):2145–2155. https://doi.org/10.1021/acsnano.9b08952

8. Li L, Cheng YF, Cao HH et al (2022) MXene/rGO/PS spheres multiple physical networks as high-performance pressure sensor. Nano Energy 95:106986. https://doi.org/10.1016/j.nanoen.2022.106986

9. Zhang JZ, Sun DD, Zhang B et al (2022) Intrinsic carbon nanotube liquid crystalline elastomer photoactuators for high-definition biomechanics. Mater Horiz 9(3):1045–1056. https://doi.org/10.1039/d1mh01810h

10. Hou YX, Wang L, Sun R et al (2022) Crack-across-pore enabled high-performance flexible pressure sensors for deep neural network enhanced sensing and human action recognition. ACS Nano 16(5):8358–8369. https://doi.org/10.1021/acsnano.2c02609

11. Yang M, Cheng YF, Yue Y et al (2022) High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv Sci 9(20):e2200507. https://doi.org/10.1002/advs.202200507

12. Guan M, Liu Y, Du H et al (2023) Durable, breathable, sweat-resistant, and degradable flexible sensors for human motion detection. Chem Eng J 462:142151. https://doi.org/10.1016/j.cej.2023.142151

13. Meng KY, Xiao X, Wei WX et al (2022) Wearable pressure sensors for pulse wave monitoring. Adv Mater 34(21):e2109357. https://doi.org/10.1002/adma.202109357

14. Shi XL, Fan XQ, Zhu YB et al (2022) Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat Commun 13(1):1119. https://doi.org/10.1038/s41467-022-28760-4

15. Song YY, Ren WJ, Zhang YQ et al (2023) Synergetic monitoring of both physiological pressure and epidermal biopotential based on a simplified on-skin-printed sensor modality. Small 19(45):e2303301. https://doi.org/10.1002/smll.202303301

16. Du WW, Li ZK, Zhao YL et al (2022) Biocompatible and breathable all-fiber-based piezoresistive sensor with high sensitivity for human physiological movements monitoring. Chem Eng J 446:137268. https://doi.org/10.1016/j.cej.2022.137268

17. Wu ZY, Liu SR, Hao ZJ et al (2023) MXene contact engineering for printed electronics. Adv Sci 10(19):e2207174. https://doi.org/10.1002/advs.202207174

18. Li LT, Zhu GX, Wang J et al (2023) A flexible and ultrasensitive interfacial iontronic multisensory sensor with an array of unique “cup-shaped” microcolumns for detecting pressure and temperature. Nano Energy 105:108012. https://doi.org/10.1016/j.nanoen.2022.108012

19. Luo S, Zhou X, Tang XY et al (2021) Microconformal electrode-dielectric integration for flexible ultrasensitive robotic tactile sensing. Nano Energy 80:105580. https://doi.org/10.1016/j.nanoen.2020.105580

20. Yang JC, Kim J, Oh J et al (2019) Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS Appl Mater Interfaces 11(21):19472–19480. https://doi.org/10.1021/acsami.9b03261

21. Shen ZR, Yang CD, Yao CJ et al (2023) Capacitive-piezoresistive hybrid flexible pressure sensor based on conductive micropillar arrays with high sensitivity over a wide dynamic range. Mater Horiz 10(2):499–511. https://doi.org/10.1039/d2mh00892k

22. Zhang YJ, Wang YH, Wang CY et al (2023) Superior performances via designed multiple embossments within interfaces for flexible pressure sensors. Chem Eng J 454:139990. https://doi.org/10.1016/j.cej.2022.139990

23. Ji B, Zhou Q, Wu JB et al (2020) Synergistic optimization toward the sensitivity and linearity of flexible pressure sensor via double conductive layer and porous microdome array. ACS Appl Mater Interfaces 12(27):31021–31035. https://doi.org/10.1021/acsami.0c08910

24. Qiao YC, Jian JM, Tang H et al (2022) An intelligent nanomesh-reinforced graphene pressure sensor with an ultra large linear range. J Mater Chem A 10(9):4858–4869. https://doi.org/10.1039/D1TA09813F

25. Chen TJ, Liu ZY, Zhao G et al (2022) Piezoresistive sensor containing lamellar MXene-plant fiber sponge obtained with aqueous MXene ink. ACS Appl Mater Interfaces 14(45):51361–51372. https://doi.org/10.1021/acsami.2c15922

26. Xu T, Song Q, Liu K et al (2023) Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett 15(1):98. https://doi.org/10.1007/s40820-023-01073-x

27. Song SQ, Zhang CF, Li WZ et al (2022) Bioinspired engineering of gradient and hierarchical architecture into pressure sensors toward high sensitivity within ultra-broad working range. Nano Energy 100:107513. https://doi.org/10.1016/j.nanoen.2022.107513

28. Yang T, Deng WL, Chu X et al (2021) Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano 15(7):11555–11563. https://doi.org/10.1021/acsnano.1c01606

29. Wang XM, Tao LQ, Yuan M et al (2021) Sea urchin-like microstructure pressure sensors with an ultra-broad range and high sensitivity. Nat Commun 12(1):1776. https://doi.org/10.1038/s41467-021-21958-y

30. Zhang Y, Yang JL, Hou XY et al (2022) Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat Commun 13(1):1317. https://doi.org/10.1038/s41467-022-29093-y

31. Liu Y, Xu X, Wei Y et al (2022) Tailoring silver nanowire nanocomposite interfaces to achieve superior stretchability, durability, and stability in transparent conductors. Nano Lett 22(9):3784–3792. https://doi.org/10.1021/acs.nanolett.2c00876

32. Shi XL, Zhu L, Yu H et al (2023) Interfacial click chemistry enabled strong adhesion toward ultra-durable crack-based flexible strain sensors. Adv Funct Mater 33(27):2301036. https://doi.org/10.1002/adfm.202301036

33. Han MM, Shen WH (2022) Nacre-inspired cellulose nanofiber/MXene flexible composite film with mechanical robustness for humidity sensing. Carbohydr Polym 298:120109. https://doi.org/10.1016/j.carbpol.2022.120109

34. Hao SW, Fu QJ, Meng L et al (2022) A biomimetic laminated strategy enabled strain-interference free and durable flexible thermistor electronics. Nat Commun 13(1):6472. https://doi.org/10.1038/s41467-022-34168-x

35. Shi XL, Wang HK, Xie XT et al (2018) Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano 13(1):649–659. https://doi.org/10.1021/acsnano.8b07805

36. Wang LM, Li N, Zhang YF et al (2022) Flexible multiresponse-actuated nacre-like MXene nanocomposite for wearable human-machine interfacing. Matter 5(10):3417–3431. https://doi.org/10.1016/j.matt.2022.06.052

37. Wei J, Jia S, Ma C et al (2023) Nacre-inspired composite film with mechanical robustness for highly efficient actuator powered by humidity gradients. Chem Eng J 451:138565. https://doi.org/10.1016/j.cej.2022.138565

38. Liu H, Chen XY, Zheng YJ et al (2021) Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv Funct Mater 31(13):2008006. https://doi.org/10.1002/adfm.202008006

39. Liu SR, Meng Q, Gao YD et al (2023) Monolithically integrated flexible sensing systems with multi-dimensional printable MXene electrodes. J Mater Chem A 11(25):13238–13248. https://doi.org/10.1039/d3ta01261a

40. Su TY, Liu NS, Lei DD et al (2022) Flexible MXene/bacterial cellulose film sound detector based on piezoresistive sensing mechanism. ACS Nano 16(5):8461–8471. https://doi.org/10.1021/acsnano.2c03155

41. Cheng YF, Xie YM, Cao HH et al (2023) High-strength MXene sheets through interlayer hydrogen bonding for self-healing flexible pressure sensor. Chem Eng J 453:139823. https://doi.org/10.1016/j.cej.2022.139823

42. Yin TT, Cheng YF, Hou YX et al (2022) 3D porous structure in MXene/PANI foam for a high-performance flexible pressure sensor. Small 18(48):e2204806. https://doi.org/10.1002/smll.202204806

43. Liu JJ, Yang WJ, Xu Y et al (2022) MXene-based films via scalable fabrication with improved mechanical and antioxidant properties for electromagnetic interference shielding. Compos Commun 31:101112. https://doi.org/10.1016/j.coco.2022.101112

44. Jin XJ, Li LL, Zhao SF et al (2021) Assessment of occlusal force and local gas release using degradable bacterial cellulose/Ti3C2Tx MXene bioaerogel for oral healthcare. ACS Nano 15(11):18385–18393. https://doi.org/10.1021/acsnano.1c07891

45. Wang DY, Wang LL, Lou Z et al (2020) Biomimetic, biocompatible and robust silk fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy 78:105252. https://doi.org/10.1016/j.nanoen.2020.105252

46. Wang LL, Wang DP, Wang K et al (2021) Biocompatible MXene/chitosan-based flexible bimodal devices for real-time pulse and respiratory rate monitoring. ACS Mater Lett 3(7):921–929. https://doi.org/10.1021/acsmaterialslett.1c00246

47. Su E, Wu FM, Zhao SQ et al (2022) Layered MXene/aramid composite film for a soft and sensitive pressure sensor. ACS Appl Mater Interfaces 14(13):15849–15858. https://doi.org/10.1021/acsami.2c01914

48. Zhang YP, Wang LL, Zhao LJ et al (2021) Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus@MXene thin-films. Adv Mater 33(22):2007890. https://doi.org/10.1002/adma.202007890

49. Chen SQ, Wang YD, Fei B et al (2022) Development of a flexible and highly sensitive pressure sensor based on an aramid nanofiber-reinforced bacterial cellulose nanocomposite membrane. Chem Eng J 430:131980. https://doi.org/10.1016/j.cej.2021.131980

50. Fu XY, Li JZ, Li DD et al (2022) MXene/ZIF-67/PAN nanofiber film for ultra-sensitive pressure sensors. ACS Appl Mater Interfaces 14(10):12367–12374. https://doi.org/10.1021/acsami.1c24655

51. Sharma S, Chhetry A, Zhang SP et al (2021) Hydrogen-bond-triggered hybrid nanofibrous membrane-based wearable pressure sensor with ultrahigh sensitivity over a broad pressure range. ACS Nano 15(3):4380–4393. https://doi.org/10.1021/acsnano.0c07847

52. Zheng YJ, Yin R, Zhao Y et al (2021) Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem Eng J 420:127720. https://doi.org/10.1016/j.cej.2020.127720

53. Yao DJ, Tang ZH, Zhang L et al (2021) A highly sensitive, foldable and wearable pressure sensor based on MXene-coated airlaid paper for electronic skin. J Mater Chem C 9(37):12642–12649. https://doi.org/10.1039/d1tc02458b

54. Yang ZP, Li HQ, Li CK et al (2022) Conductive and room-temperature self-healable polydimethylsiloxane-based elastomer film with ridge-like microstructure for piezoresistive pressure sensor. Chem Eng J 430:133103. https://doi.org/10.1016/j.cej.2021.133103

55. Chao MY, He LZ, Gong M et al (2021) Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 15(6):9746–9758. https://doi.org/10.1021/acsnano.1c00472


关于本刊

Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。


初审迅速:初审快速退稿,不影响作者投其它期刊。

审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。

收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。

文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。


期刊主页:

http://www.springer.com/journal/42242

http://www.jzus.zju.edu.cn/ (国内可下载全文)

在线投稿地址:

http://www.editorialmanager.com/bdmj/default.aspx


入群交流

围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码

生物设计与制造BDM
论文导读、领域资讯
 最新文章