内容简介
本研究论文聚焦药物研发中缺少合适工具以及动物实验的伦理问题,提出了模块化纸芯片概念,有望成为药物研发新工具。纸质微芯片具有生物相容性好、制作简单、易操作等优势,成为临床诊断等领域的理想材料。本研究描述了一种基于投影式3D打印(PBP)技术开发模块化3D纸基微流控芯片的方法。设计并制作了一系列2D纸基微流控模块。在评估了曝光时间对流道精度的影响后,分析了该流道的分辨率。此外,通过不同的方法,在2D芯片的基础上组装了3D纸基微流控芯片,其流道连接性良好。验证了基于3D纸基微流控芯片的支架式2D细胞培养和水凝胶式3D细胞培养系统的可行性。此外,通过将挤出式生物3D打印技术与所提出的3D纸基微流控芯片相结合,通过在3D纸基微流控芯片上直接打印3D水凝胶结构,建立了多器官微流控芯片,这证实了所制备的模块化3D纸基微流控芯片在生物医学应用中具有潜在的应用前景。
引用本文(点击最下方阅读原文可下载PDF)
Xie M, Fu Z, Lu C, et al., 2024. Rapid fabrication of modular 3D paper-based microfluidic chips using projection-based 3D printing. Bio-des Manuf 7(5):611–623. https://doi.org/10.1007/s42242-024-00298-y
文章导读
图1 基于投影式光固化3D打印技术制造模块化3D纸基微流控芯片示意图
图2 2D纸基模块的流道测试
图3 用于3D纸基微流控芯片的多功能模块设计
图4 3D纸基微流控芯片的装配方法与联通测试
图5 多器官微流控芯片的建立
参考文献
上下滑动以阅览
1. Eglen RM, Randle DH (2015) Drug discovery goes three-dimensional: goodbye to flat high-throughput screening? ASSAY Drug Dev Technol 13(5):262–265. https://doi.org/10.1089/adt.2015.647
2. Santo VE, Rebelo SP, Estrada MF et al (2017) Drug screening in 3D in vitro tumor models: overcoming current pitfalls of efficacy read-outs. Biotechnol J 12(1):1600505. https://doi.org/10.1002/biot.201600505
3. Xie MJ, Gao Q, Fu JZ et al (2020) Bioprinting of novel 3D tumor array chip for drug screening. Bio-Des Manuf 3(3):175–188. https://doi.org/10.1007/s42242-020-00078-4
4. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7010):368–373. https://doi.org/10.1038/nature05058
5. Ren KN, Zhou JH, Wu HK (2013) Materials for microfluidic chip fabrication. Acc Chem Res 46(11):2396–2406. https://doi.org/10.1021/ar300314s
6. Shrimal P, Jadeja G, Patel S (2020) A review on novel methodologies for drug nanoparticle preparation: microfluidic approach. Chem Eng Res Des 153:728–756. https://doi.org/10.1016/j.cherd.2019.11.031
7. Hamdallah SI, Zoqlam R, Erfle P et al (2020) Microfluidics for pharmaceutical nanoparticle fabrication: the truth and the myth. Int J Pharm 584:119408. https://doi.org/10.1016/j.ijpharm.2020.119408
8. Convery N, Gadegaard N (2019) 30 years of microfluidics. Micro Nano Eng 2:76–91. https://doi.org/10.1016/j.mne.2019.01.003
9. Hunt M, Taverne M, Askey J et al (2020) Harnessing multi-photon absorption to produce three-dimensional magnetic structures at the nanoscale. Materials 13(3):761. https://doi.org/10.3390/ma13030761
10. Gale BK, Jafek AR, Lambert CJ et al (2018) A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions 3(3):60. https://doi.org/10.3390/inventions3030060
11. Gross BC, Erkal JL, Lockwood SY et al (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86(7):3240–3253. https://doi.org/10.1021/ac403397r
12. Singh A, Malek CK, Kulkarni SK (2010) Development in microreactor technology for nanoparticle synthesis. Int J Nanosci 9(2):93–112
13. Martins JP, Torrieri G, Santos HA (2018) The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems. Expert Opin Drug Deliv 15(5):469–479. https://doi.org/10.1080/17425247.2018.1446936
14. Campbell SB, Wu QH, Yazbeck J (2021) Beyond polydimethylsiloxane: alternative materials for fabrication of organ-on-a-chip devices and microphysiological systems. ACS Biomater Sci Eng 7(7):2880–2899. https://doi.org/10.1021/acsbiomaterials.0c00640
15. Martinez AW, Phillips ST, Butte MJ et al (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem 46(8):1318–1320. https://doi.org/10.1002/anie.200603817
16. Li HB, Cheng F, Robledo-Lara JA et al (2020) Fabrication of paper-based devices for in vitro tissue modeling. Bio-Des Manuf 3(3):252–265. https://doi.org/10.1007/s42242-020-00077-5
17. Lu Y, Shi WW, Jiang L et al (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30(9):1497–1500. https://doi.org/10.1002/elps.200800563
18. Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81(16):7091–7095. https://doi.org/10.1021/ac901071p
19. Schilling KM, Lepore AL, Kurian JA et al (2012) Fully enclosed microfluidic paper-based analytical devices. Anal Chem 84(3):1579–1585. https://doi.org/10.1021/ac202837s
20. Songjaroen T, Dungchai W, Chailapakul O et al (2011) Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Talanta 85(5):2587–2593. https://doi.org/10.1016/j.talanta.2011.08.024
21. Zhang AL, Zha Y (2012) Fabrication of paper-based microfluidic device using printed circuit technology. AIP Adv 2(2):022171. https://doi.org/10.1063/1.4733346
22. Bruzewicz DA, Reches M, Whitesides GM (2008) Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal Chem 80(9):3387–3392. https://doi.org/10.1021/ac702605a
23. Nie JF, Zhang Y, Lin LW et al (2012) Low-cost fabrication of paper-based microfluidic devices by one-step plotting. Anal Chem 84(15):6331–6335. https://doi.org/10.1021/ac203496c
24. Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80(18):6928–6934. https://doi.org/10.1021/ac800604v
25. Abe K, Kotera K, Suzuki K et al (2010) Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem 398(2):885–893. https://doi.org/10.1007/s00216-010-4011-2
26. Olkkonen J, Lehtinen K, Erho T (2010) Flexographically printed fluidic structures in paper. Anal Chem 82(24):10246–10250. https://doi.org/10.1021/ac1027066
27. Chitnis G, Ding ZW, Chang CL et al (2011) Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip 11(6):1161–1165. https://doi.org/10.1039/c0lc00512f
28. Spicar-Mihalic P, Toley B, Houghtaling J et al (2013) CO2 laser cutting and ablative etching for the fabrication of paper-based devices. J Micromech Microeng 23(6):067003. https://doi.org/10.1088/0960-1317/23/6/067003
29. Nie JF, Liang YZ, Zhang Y et al (2013) One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices. Analyst 138(2):671–676. https://doi.org/10.1039/c2an36219h
30. Fenton EM, Mascarenas MR, López GP et al (2009) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interface 1(1):124–129. https://doi.org/10.1021/am800043z
31. Cassano CL, Fan ZH (2013) Laminated paper-based analytical devices (LPAD): fabrication, characterization, and assays. Microfluid Nanofluid 15(2):173–181. https://doi.org/10.1007/s10404-013-1140-x
32. Giokas DL, Tsogas GZ, Vlessidis AG (2014) Programming fluid transport in paper-based microfluidic devices using razor-crafted open channels. Anal Chem 86(13):6202–6207. https://doi.org/10.1021/ac501273v
33. Glavan AC, Martinez RV, Maxwell EJ et al (2013) Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper. Lab Chip 13(15):2922–2930. https://doi.org/10.1039/c3lc50371b
34. Renault C, Li X, Fosdick SE et al (2013) Hollow-channel paper analytical devices. Anal Chem 85(16):7976–7979. https://doi.org/10.1021/ac401786h
35. Thuo MM, Martinez RV, Lan WJ et al (2014) Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods. Chem Mater 26(14):4230–4237. https://doi.org/10.1021/cm501596s
36. Dungchai W, Chailapakul O, Henry CS (2011) A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136(1):77–82. https://doi.org/10.1039/c0an00406e
37. Sameenoi Y, Nongkai PN, Nouanthavong S et al (2014) One-step polymer screen-printing for microfluidic paper-based analytical device (μPAD) fabrication. Analyst 139(24):6580–6588. https://doi.org/10.1039/c4an01624f
38. Aazmi A, Guo ZX, Yu HR et al (2023) Enhanced mixing efficiency for a novel 3D Tesla micromixer for Newtonian and non-Newtonian fluids. J Zhejiang Univ-SCI A (Appl Phys & Eng) 24(12):1065–1078. https://doi.org/10.1631/jzus.A2300589
39. Zhao DK, Xu HQ, Yin J et al (2022) Inkjet 3D bioprinting for tissue engineering and pharmaceutics. J Zhejiang Univ-SCI A (Appl Phys & Eng) 23(12):955–973. https://doi.org/10.1631/2023.A2200569
40. Kwong P, Gupta M (2012) Vapor phase deposition of functional polymers onto paper-based microfluidic devices for advanced unit operations. Anal Chem 84(22):10129–10135. https://doi.org/10.1021/ac302861v
41. Cai LF, Xu CX, Lin SH et al (2014) A simple paper-based sensor fabricated by selective wet etching of silanized filter paper using a paper mask. Biomicrofluidics 8(5):056504. https://doi.org/10.1063/1.4898096
42. He Y, Qiu JJ, Fu JZ et al (2015) Printing 3D microfluidic chips with a 3D sugar printer. Microfluid Nanofluid 19:447–456. https://doi.org/10.1007/s10404-015-1571-7
43. Nie J, Gao Q, Qiu JJ et al (2018) 3D printed Lego®–like modular microfluidic devices based on capillary driving. Biofabrication 10(3):035001. https://doi.org/10.1088/1758-5090/aaadd3
44. He Y, Wu Y, Fu JZ et al (2016) Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis 28(8):1658–1678. https://doi.org/10.1002/elan.201600043
45. Lu Y, Li G, Li YQ et al (2023) Cellulose nanofibril matrix drives the dynamic formation of spheroids. J Zhejiang Univ-SCI B (Biomed & Biotechnol) 24(10):922–934. https://doi.org/10.1631/jzus.B23d0003
46. Wang ZL, Yang JJ, Sun XH et al (2023) Exosome-mediated regulatory mechanisms in skeletal muscle: a narrative review. J Zhejiang Univ-SCI B (Biomed & Biotechnol) 24(1):1–14. https://doi.org/10.1631/jzus.B2200243
47. Martinez AW, Phillips ST, Butte MJ et al (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem 119(8):1340–1342. https://doi.org/10.1002/ange.200603817
48. Li X, Tian JF, Nguyen T et al (2008) Paper-based microfluidic devices by plasma treatment. Anal Chem 80(23):9131–9134. https://doi.org/10.1021/ac801729t
关于本刊
Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。
初审迅速:初审快速退稿,不影响作者投其它期刊。
审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。
收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。
文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。
期刊主页:
http://www.springer.com/journal/42242
http://www.jzus.zju.edu.cn/ (国内可下载全文)
在线投稿地址:
http://www.editorialmanager.com/bdmj/default.aspx
入群交流
围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码