上海交通大学刘景全团队 | 集成电生理记录和离子浓度监测功能的植入式神经探针

文摘   2024-09-09 22:28   浙江  

内容简介


本文聚焦集成电生理记录和离子浓度监测功能的植入式神经探针。监测神经元的电生理活动和血液中的钙离子可以帮助人们更好地了解与疾病相关的神经系统回路。然而,当前原位钙离子监测工具很少,且大多集成度低、灵敏度有限。本文提出一种集成原位Ag/AgCl 参比电极(ISA/ARE)的植入式探针,该探针可以监测动作电位(AP)和Ca2+浓度。实验结果表明,Ca2+传感器的灵敏度可达100.7 mV/decade,其在干扰物实验中呈现良好的选择性。本研究通过铂黑修饰的12个电生理电极记录到了神经元的AP,而当将CaCl2溶液重复微注射到大脑的CA1区域时,Ca2+传感器则观察到神经元的可逆电位变化。上述结果表明,该探针能够满足电生理信号和离子浓度同步监测的需求,加深人们对神经回路的理解,促进脑科学的发展。


引用本文(点击最下方阅读原文可下载PDF)

Xiao J, Xu M, Wang L, et al., 2024. Implantable probe with integrated reference electrode for in situ neural signal and calcium ion monitoring. Bio-des Manuf 7(4):591–595. https://doi.org/10.1007/s42242-024-00283-5

文章导读



图1 探针及其制备过程示意图。(a) 探针植入小鼠和针柄结构示意图;(b) 利用微机电系统(MEMS)工艺制备探针;(c) 硅片上的探针阵列;(d) 单根探针的超景深显微图


图2 电生理记录电极的修饰与表征。(a) 电生理记录电极修饰铂黑前后的循环伏安曲线;(b) 电生理记录电极修饰铂黑前后的阻抗曲线;(c) 电生理记录电极修饰铂黑前后的超景深显微图;(d) 电生理记录电极修饰铂黑前后的扫描电子显微图


图3 原位参比电极的制备与表征。(a) 原位参比电极镀银过程的电压曲线;(b) 原位参比电极银层氯化过程的电压曲线;(c) 原位参比电极的能谱(EDS)分层图像;(d) 原位参比电极的表面元素谱


图4 Ca2+传感器的制备与表征。(a) 通过滴涂法修饰Ca2+传感器;(b) 不同浓度CaCl2溶液中Ca2+传感器的开路电位响应;(c) Ca2+传感器的在干扰实验呈现良好的选择性;(d) 四个Ca2+传感器之间的响应差异


图5 小鼠在体信号记录实验。(a) 将探针植入小鼠大脑CA1区后进行动作电位和Ca2+浓度记录;(b) 从CA1区记录的12个通道的局部场电位(LFP)数据(10 s);(c) 利用主成分分析进行尖峰信号分类;(d) 来自CA1区神经元的两种自发尖峰信号;(e) 在CA1区重复微量注射CaCl2溶液过程中Ca2+传感器的循环电位

参考文献

上下滑动以阅览

1. Alivisatos AP, Andrews AM, Boyden ES et al (2013) Nanotools for neuroscience and brain activity mapping. ACS Nano 7(3):1850–1866. https://doi.org/10.1021/nn4012847

2. Altieri SC, Yang HY, O’Brien HJ et al (2015) Perinatal vs genetic programming of serotonin states associated with anxiety. Neuropsychopharmacology 40(6):1456–1470. https://doi.org/10.1038/npp.2014.331

3. Topalovic U, Aghajan ZM, Villaroman D et al (2020) Wireless programmable recording and stimulation of deep brain activity in freely moving humans. Neuron 108(2):322–334.e9. https://doi.org/10.1016/j.neuron.2020.08.021

4. Raducanu BC, Yazicioglu RF, Lopez CM et al (2017) Time multiplexed active neural probe with 1356 parallel recording sites. Sensors 17(10):2388–2408. https://doi.org/10.3390/s17102388

5. Jun JJ, Steinmetz NA, Siegle JH et al (2017) Fully integrated silicon probes for high-density recording of neural activity. Nature 551(7679):232–236. https://doi.org/10.1038/nature24636

6. Steinmetz NA, Aydin C, Lebedeva A et al (2021) Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372(6539):eabf4588. https://doi.org/10.1126/science.abf4588

7. Musk E, Neuralink (2019) An integrated brain-machine interface platform with thousands of channels. J Med Internet Res 21(10):e16194. https://doi.org/10.2196/16194

8. Aroonyadet N, Wang XL, Song Y et al (2015) Highly scalable, uniform, and sensitive biosensors based on top-down indium oxide nanoribbons and electronic enzyme-linked immunosorbent assay. Nano Lett 15(3):1943–1951. https://doi.org/10.1021/nl5047889

9. Liu QZ, Zhao CZ, Chen MR et al (2020) Flexible multiplexed In2O3 nanoribbon aptamer-field-effect transistors for biosensing. iScience 23(9):101469. https://doi.org/10.1016/j.isci.2020.101469

10. Nakatsuka N, Yang KA, Abendroth JM et al (2018) Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362(6412):319–324. https://doi.org/10.1126/science.aao6750

11. Huang WJ, Ke Y, Zhu JP et al (2021) TRESK channel contributes to depolarization-induced shunting inhibition and modulates epileptic seizures. Cell Rep 36(3):109404. https://doi.org/10.1016/j.celrep.2021.109404

12. Ouzounov DG, Wang TY, Wang MR et al (2017) In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat Methods 14(4):388–390. https://doi.org/10.1038/nmeth.4183

13. Yang WJ, Yuste R (2017) In vivo imaging of neural activity. Nat Methods 14(4):349–359. https://doi.org/10.1038/nmeth.4230

14. Ling W, Yu JX, Ma N et al (2020) Flexible electronics and materials for synchronized stimulation and monitoring in multi-encephalic regions. Adv Funct Mater 30(32):2002644. https://doi.org/10.1002/adfm.202002644

15. Niederkofler V, Asher TE, Dymecki SM (2015) Functional interplay between dopaminergic and serotonergic neuronal systems during development and adulthood. ACS Chem Neurosci 6(7):1055–1070. https://doi.org/10.1021/acschemneuro.5b00021

16. Vaiana M, Muldoon SF (2020) Multilayer brain networks. J Nonlinear Sci 30(5):2147–2169. https://doi.org/10.1007/s00332-017-9436-8

17. Article MathSciNet Google Scholar Abbott J, Ye TY, Krenek K et al (2020) A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat Biomed Eng 4(2):232–241. https://doi.org/10.1038/s41551-019-0455-7

18. Brewer PJ, Leese RJ, Brown RJC (2012) An improved approach for fabricating Ag/AgCl reference electrodes. Electrochim Acta 71:252–257. https://doi.org/10.1016/j.electacta.2012.03.164

19. Tjon KCE, Yuan J (2019) Impedance characterization of silver/silver chloride micro-electrodes for bio-sensing applications. Electrochim Acta 320:134638. https://doi.org/10.1016/j.electacta.2019.134638

20. Lee YK, Jang KI, Ma Y et al (2017) Chemical sensing systems that utilize soft electronics on thin elastomeric substrates with open cellular designs. Adv Funct Mater 27(9):1605476. https://doi.org/10.1002/adfm.201605476

21. Nyein HYY, Gao W, Shahpar Z et al (2016) A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS Nano 10(7):7216–7224. https://doi.org/10.1021/acsnano.6b04005

22. Parrilla M, Cuartero M, Crespo GA (2019) Wearable potentiometric ion sensors. TrAC Trends Anal Chem 110:303–320. https://doi.org/10.1016/j.trac.2018.11.024

23. Lausen T, Keil S, Thewes R (2023) An ultra low power pixel for implantable neural interfaces. In: 9th International Workshop on Advances in Sensors and Interfaces, p.325–328. https://doi.org/10.1109/IWASI58316.2023.10164384

24. Prasad A, Sahin M (2009) Spinal cord recordings in rats during skilled reaching task. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p.582–585. https://doi.org/10.1109/IEMBS.2009.5332818


关于本刊

Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。


初审迅速:初审快速退稿,不影响作者投其它期刊。

审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。

收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。

文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。


期刊主页:

http://www.springer.com/journal/42242

http://www.jzus.zju.edu.cn/ (国内可下载全文)

在线投稿地址:

http://www.editorialmanager.com/bdmj/default.aspx


入群交流

围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码

生物设计与制造BDM
论文导读、领域资讯
 最新文章