内容简介
本综述论文聚焦面向可穿戴生物电子的激光选择性加工最新进展。对于个人医疗保健的可穿戴技术和智能虚拟/增强现实应用兴趣的不断增加,促使了简便制造方法的发展。激光因其远程、无菌、快速和对材料选择性加工的特性,长期以来被用于解决这些具有挑战性的技术问题。本综述将相关激光工艺的最新发展总结为两类。首先,介绍了激光诱导石墨烯等变革性方法。除了设计优化和改变基底材料外,变革性方法的最新进展现在能够通过同时转化异质前驱体或顺序添加与其他电子元件结合的功能层,去实现更复杂的材料组成和多层设备配置。此外,更传统的激光技术,如消融、烧结和合成,仍然可以用于通过扩大适用材料范围和采用新机制来增强整个系统的功能。接下来,讨论了通过相应激光工艺开发的可穿戴设备组件,其中重点讨论了化学/物理传感器和能源设备。此外,特别关注了使用多个激光源或工艺的应用,这些应用为全激光制造可穿戴设备奠定了基础。
引用本文(点击最下方阅读原文可下载PDF)
Kim Y, Hwang E, Kai C, et al., 2024. Recent developments in selective laser processes for wearable devices. Bio-des Manuf 7(4):517–547. https://doi.org/10.1007/s42242-024-00300-7
文章导读
图1 可穿戴设备的选择性激光工艺的总体分类
图2 激光烧蚀/加工
图3 激光烧结与合成
图4 多种激光工艺
参考文献
上下滑动以阅览
1. Truong PL, Yin Y, Lee D et al (2023) Advancement in COVID-19 detection using nanomaterial-based biosensors. Exploration 3(1):20210232. https://doi.org/10.1002/EXP.20210232
2. Yeo J, Hong S, Lee D et al (2012) Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics. PLoS ONE 7(8):e42315. https://doi.org/10.1371/journal.pone.0042315
3. Kim DC, Shim HJ, Lee W et al (2020) Material-based approaches for the fabrication of stretchable electronics. Adv Mater 32(15):e1902743. https://doi.org/10.1002/adma.201902743
4. Xue ZG, Song HL, Rogers JA et al (2020) Mechanically-guided structural designs in stretchable inorganic electronics. Adv Mater 32(15):e1902254. https://doi.org/10.1002/adma.201902254
5. Son Y, Yeo J, Moon H et al (2011) Nanoscale electronics: digital fabrication by direct femtosecond laser processing of metal nanoparticles. Adv Mater 23(28):3176–3181. https://doi.org/10.1002/adma.201100717
6. O’Halloran S, Pandit A, Heise A et al (2023) Two-photon polymerization: fundamentals, materials, and chemical modification strategies. Adv Sci 10(7):e2204072. https://doi.org/10.1002/advs.202204072
7. Bäuerle D (2011) Laser Processing and Chemistry. Springer, Berlin, Germany. https://doi.org/10.1007/978-3-642-17613-5
8. Qu ZH, Sun SF, Wang J et al (2023) Application of ultrafast laser beam shaping in micro-optical elements. J Laser Appl 35(3):24. https://doi.org/10.2351/7.0001033
9. Grigoropoulos CP (2009) Transport in Laser Microfabrication. Cambridge University Press, UK. https://doi.org/10.1017/CBO9780511596674
10. Park H, Park JJ, Bui PD et al (2023) Laser-based selective material processing for next-generation additive manufacturing. Adv Mater 2023:e2307586. https://doi.org/10.1002/adma.202307586
11. Hong S, Lee H, Yeo J et al (2016) Digital selective laser methods for nanomaterials: from synthesis to processing. Nano Today 11(5):547–564. https://doi.org/10.1016/j.nantod.2016.08.007
12. Lin J, Peng ZW, Liu YY et al (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5:5714. https://doi.org/10.1038/ncomms6714
13. Choi KH, Park S, Hyeong SK et al (2020) Triboelectric effect of surface morphology controlled laser induced graphene. J Mater Chem A 8(38):19822–19832. https://doi.org/10.1039/d0ta05806h
14. Chen L, Hu B, Gao X et al (2022) Double-layered laser induced graphene (LIG) porous composites with interlocked wave-shaped array for large linearity range and highly pressure-resolution sensor. Compos Sci Technol 230:109790. https://doi.org/10.1016/j.compscitech.2022.109790
15. Wei S, Liu YJ, Yang LN et al (2022) Flexible large e-skin array based on patterned laser-induced graphene for tactile perception. Sens Actuat A Phys 334:113308. https://doi.org/10.1016/j.sna.2021.113308
16. Huang YX, Tao LQ, Yu JB et al (2020) Integrated sensing and warning multifunctional devices based on the combined mechanical and thermal effect of porous graphene. ACS Appl Mater Interfaces 12(47):53049–53057. https://doi.org/10.1021/acsami.0c13909
17. Gandla S, Naqi M, Lee M et al (2020) Highly linear and stable flexible temperature sensors based on laser-induced carbonization of polyimide substrates for personal mobile monitoring. Adv Mater Technol 5(7):2000014. https://doi.org/10.1002/admt.202000014
18. Huang LX, Wang H, Wu PX et al (2020) Wearable flexible strain sensor based on three-dimensional wavy laser-induced graphene and silicone rubber. Sensors 20(15):4266. https://doi.org/10.3390/s20154266
19. Liu W, Huang YH, Peng YD et al (2020) Stable wearable strain sensors on textiles by direct laser writing of graphene. ACS Appl Nano Mater 3(1):283–293. https://doi.org/10.1021/acsanm.9b01937
20. He MH, Wang YN, Wang SR et al (2020) Laser-induced graphene enabled 1D fiber electronics. Carbon 168:308–318. https://doi.org/10.1016/j.carbon.2020.06.084
21. Han S, Hong S, Ham J et al (2014) Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv Mater 26(33):5808–5814. https://doi.org/10.1002/adma.201400474
22. Li YL, Luong DX, Zhang JB et al (2017) Laser-induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces. Adv Mater 29(27):8. https://doi.org/10.1002/adma.201700496
23. Raza T, Tufail MK, Ali A et al (2022) Wearable and flexible multifunctional sensor based on laser-induced graphene for the sports monitoring system. ACS Appl Mater Interfaces 14(48):54170–54181. https://doi.org/10.1021/acsami.2c14847
24. Tian Q, Yan WR, Li YQ et al (2020) Bean pod-inspired ultrasensitive and self-healing pressure sensor based on laser-induced graphene and polystyrene microsphere sandwiched structure. ACS Appl Mater Interfaces 12(8):9710–9717. https://doi.org/10.1021/acsami.9b18873
25. Zhao J, Gui JH, Luo JS et al (2021) Highly responsive screen-printed asymmetric pressure sensor based on laser-induced graphene. J Micromechan Microeng 32(1):9. https://doi.org/10.1088/1361-6439/ac388d
26. Yao YB, Jiang ZF, Yao JW et al (2020) Self-sealing carbon patterns by one-step direct laser writing and their use in multifunctional wearable sensors. ACS Appl Mater Interfaces 12(45):50600–50609. https://doi.org/10.1021/acsami.0c14949
27. Huang F, Feng GY, Yin JJ et al (2020) Direct laser writing of transparent polyimide film for supercapacitor. Nanomaterials 10(12):2547. https://doi.org/10.3390/nano10122547
28. Shao Q, Liu G, Teweldebrhan D et al (2008) High-temperature quenching of electrical resistance in graphene interconnects. Appl Phys Lett 92(20):202108. https://doi.org/10.1063/1.2927371
29. Lee YA, Lim J, Cho Y et al (2020) Attachable micropseudocapacitors using highly swollen laser-induced-graphene electrodes. Chem Eng J 386:123972. https://doi.org/10.1016/j.cej.2019.123972
30. Rodriguez RD, Khalelov A, Postnikov PS et al (2020) Beyond graphene oxide: laser engineering functionalized graphene for flexible electronics. Mater Horiz 7(4):1030–1041. https://doi.org/10.1039/c9mh01950b
31. Wei YH, Li XS, Wang YF et al (2021) Graphene-based multifunctional textile for sensing and actuating. ACS Nano 15(11):17738–17747. https://doi.org/10.1021/acsnano.1c05701
32. Wan ZF, Wang SJ, Haylock B et al (2021) Localized surface plasmon enhanced laser reduction of graphene oxide for wearable strain sensor. Adv Mater Technol 6(5):11. https://doi.org/10.1002/admt.202001191
33. Wu Q, Qiao YC, Guo R et al (2020) Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring. ACS Nano 14(8):10104–10114. https://doi.org/10.1021/acsnano.0c03294
34. Park S, Park J, Kim Y et al (2020) Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors. Nano Energy 78:105266. https://doi.org/10.1016/j.nanoen.2020.105266
35. Zhang KM, Zhang JH, Liu YT et al (2021) A NIR laser induced self-healing PDMS/gold nanoparticles conductive elastomer for wearable sensor. J Colloid Interface Sci 599:360–369. https://doi.org/10.1016/j.jcis.2021.04.117
36. Nova NN, Zarzar LD (2022) Direct laser writing of graphitic carbon from liquid precursors. Chem Mater 34(10):4602–4612. https://doi.org/10.1021/acs.chemmater.2c00467
37. Zhao GG, Ling Y, Su YJ et al (2022) Laser-scribed conductive, photoactive transition metal oxide on soft elastomers for Janus on-skin electronics and soft actuators. Sci Adv 8(25):eabp9734. https://doi.org/10.1126/sciadv.abp9734
38. Jung Y, Min J, Choi J et al (2022) Smart paper electronics by laser-induced graphene for biodegradable real-time food spoilage monitoring. Appl Mater Today 29:1010589. https://doi.org/10.1016/j.apmt.2022.101589
39. Silvestre SL, Pinheiro T, Marques AC et al (2022) Cork derived laser-induced graphene for sustainable green electronics. Flex Print Electron 7(3):35021. https://doi.org/10.1088/2058-8585/ac8e7b
40. Miyakoshi R, Hayashi S, Terakawa M (2023) Direct patterning of conductive structures on hydrogels by laser-based graphitization for supercapacitor fabrication. Adv Electron Mater 9(5):2201277. https://doi.org/10.1002/aelm.202201277
41. Wang WT, Lu LS, Zhang DK et al (2023) Experimental and modeling study of laser induced silicon carbide/graphene on cotton cloth for superhydrophobic applications. Opt Laser Technol 158:108782. https://doi.org/10.1016/j.optlastec.2022.108782
42. Li ZH, Lu LS, Xie YX et al (2021) Preparation of laser-induced graphene fabric from silk and its application examples for flexible sensor. Adv Eng Mater 23(9):2100195. https://doi.org/10.1002/adem.202100195
43. Le TSD, Lee YA, Nam HK et al (2021) Green flexible graphene–inorganic-hybrid micro-supercapacitors made of fallen leaves enabled by ultrafast laser pulses. Adv Funct Mater 32(20):2107768. https://doi.org/10.1002/adfm.202107768
44. d’Amora M, Lamberti A, Fontana M et al (2020) Toxicity assessment of laser-induced graphene by zebrafish during development. J Phys Mater 3(3):34008. https://doi.org/10.1088/2515-7639/ab9522
45. Pinheiro T, Correia R, Morais M et al (2022) Water peel-off transfer of electronically enhanced, paper-based laser-induced graphene for wearable electronics. ACS Nano 16(12):20633–20646. https://doi.org/10.1021/acsnano.2c07596
46. Lee S, Eun J, Jeon S (2020) Facile fabrication of a highly efficient moisture-driven power generator using laser-induced graphitization under ambient conditions. Nano Energy 68:104364. https://doi.org/10.1016/j.nanoen.2019.104364
47. Lee CW, Jeong SY, Kwon YW et al (2022) Fabrication of laser-induced graphene-based multifunctional sensing platform for sweat ion and human motion monitoring. Sens Actuat A Phys 334:113320. https://doi.org/10.1016/j.sna.2021.113320
48. Ji XJ, Zhong Y, Li CY et al (2021) Nanoporous carbon aerogels for laser-printed wearable sensors. ACS Appl Nano Mater 4(7):6796–6804. https://doi.org/10.1021/acsanm.1c00858
49. Zhang HQ, He RY, Liu H et al (2021) A fully integrated wearable electronic device with breathable and washable properties for long-term health monitoring. Sens Actuat A Phys 322:112611. https://doi.org/10.1016/j.sna.2021.112611
50. Shen L, Zhou SK, Gu BS et al (2023) Highly sensitive strain sensor fabricated by direct laser writing on lignin paper with strain engineering. Adv Eng Mater 25(14):2201882. https://doi.org/10.1002/adem.202201882
51. Huang F, Zhou SK, Yan ZY et al (2023) Laser carbonization of lignin-based fiber membranes with heating treatment for flexible supercapacitors. Appl Surf Sci 619:156757. https://doi.org/10.1016/j.apsusc.2023.156757
52. Parmeggiani M, Stassi S, Fontana M et al (2021) Laser-induced graphenization of textile yarn for wearable electronics application. Smart Mater Struct 30(10):105007. https://doi.org/10.1088/1361-665X/ac182c
53. Rao YF, Yuan M, Gao B et al (2023) Laser-scribed phosphorus-doped graphene derived from Kevlar textile for enhanced wearable micro-supercapacitor. J Colloid Interface Sci 630(Pt A):586–594. https://doi.org/10.1016/j.jcis.2022.10.024
54. Mamleyev ER, Weidler PG, Nefedov A et al (2021) Nano- and microstructured copper/copper oxide composites on laser-induced carbon for enzyme-free glucose sensors. ACS Appl Nano Mater 4(12):13747–13760. https://doi.org/10.1021/acsanm.1c03149
55. Zhu CG, Dong X, Mei XS et al (2020) Direct laser writing of MnO2 decorated graphene as flexible supercapacitor electrodes. J Mater Sci 55(36):17108–17119. https://doi.org/10.1007/s10853-020-05212-2
56. Li QS, Wu TY, Zhao W et al (2022) 3D printing stretchable core-shell laser scribed graphene conductive network for self-powered wearable devices. Compos Part B Eng 240:110000. https://doi.org/10.1016/j.compositesb.2022.110000
57. Bai SG, Tang Y, Wu YP et al (2020) High voltage microsupercapacitors fabricated and assembled by laser carving. ACS Appl Mater Interfaces 12(40):45541–45548. https://doi.org/10.1021/acsami.0c11935
58. Liu HL, Xie YX, Liu JB et al (2020) Laser-induced and KOH-activated 3D graphene: a flexible activated electrode fabricated via direct laser writing for in-plane micro-supercapacitors. Chem Eng J 393:124672. https://doi.org/10.1016/j.cej.2020.124672
59. Zhao J, Gao LJ, Wang ZT et al (2021) Boosting the performance of flexible in-plane micro-supercapacitors by engineering MoS2 nanoparticles embedded in laser-induced graphene. J Alloy Compd 887:161514. https://doi.org/10.1016/j.jallcom.2021.161514
60. Liu W, Chen Q, Huang YH et al (2022) In situ laser synthesis of Pt nanoparticles embedded in graphene films for wearable strain sensors with ultra-high sensitivity and stability. Carbon 190:245–254. https://doi.org/10.1016/j.carbon.2022.01.020
61. Xu RQ, Liu P, Ji GH et al (2020) Versatile strategy to design flexible planar-integrated microsupercapacitors based on Co3O4-decorated laser-induced graphene. ACS Appl Energy Mater 3(11):10676–10684. https://doi.org/10.1021/acsaem.0c01744
62. Lin N, Chen HN, Wang WT et al (2021) Laser-induced graphene/MoO2 core-shell electrodes on carbon cloth for integrated, high-voltage, and in-planar microsupercapacitors. Adv Mater Technol 6(5):200091. https://doi.org/10.1002/admt.202000991
63. Yi N, Cheng Z, Li H et al (2020) Stretchable, ultrasensitive, and low-temperature NO2 sensors based on MoS2@rGO nanocomposites. Mater Today Phys 15:100265. https://doi.org/10.1016/j.mtphys.2020.100265
64. Han X, Ye RQ, Chyan Y et al (2018) Laser-induced graphene from wood impregnated with metal salts and use in electrocatalysis. ACS Appl Nano Mater 1(9):5053–5061. https://doi.org/10.1021/acsanm.8b01163
65. Ye RQ, James DK, Tour JM (2018) Laser-induced graphene. Acc Chem Res 51(7):1609–1620. https://doi.org/10.1021/acs.accounts.8b00084
66. Tang Q, Zhou Z (2013) Graphene-analogous low-dimensional materials. Prog Mater Sci 58(8):1244–1315. https://doi.org/10.1016/j.pmatsci.2013.04.003
67. Wang WT, Lu LS, Xie YX et al (2020) A highly stretchable microsupercapacitor using laser-induced graphene/NiO/Co3O4 electrodes on a biodegradable waterborne polyurethane substrate. Adv Mater Technol 5(2):1900903. https://doi.org/10.1002/admt.201900903
68. Xu RQ, Wang ZT, Gao LJ et al (2022) Effective design of MnO2 nanoparticles embedded in laser-induced graphene as shape-controllable electrodes for flexible planar microsupercapacitors. Appl Surf Sci 571:151385. https://doi.org/10.1016/j.apsusc.2021.151385
69. Chen X, Hou ZR, Li GX et al (2022) A laser-scribed wearable strain sensing system powered by an integrated rechargeable thin-film zinc-air battery for a long-time continuous healthcare monitoring. Nano Energy 101:107606. https://doi.org/10.1016/j.nanoen.2022.107606
70. Zhao J, Luo JS, Zhou ZW et al (2021) Novel multi-walled carbon nanotubes-embedded laser-induced graphene in crosslinked architecture for highly responsive asymmetric pressure sensor. Sens Actuat A Phys 323:112658. https://doi.org/10.1016/j.sna.2021.112658
71. Zhang C, Chen JG, Gao JD et al (2023) Laser processing of crumpled porous graphene/MXene nanocomposites for a standalone gas sensing system. Nano Lett 23(8):3435–3443. https://doi.org/10.1021/acs.nanolett.3c00454
72. Rethfeld B, Ivanov DS, Garcia ME et al (2017) Modelling ultrafast laser ablation. J Phys D Appl Phys 50(19):193001. https://doi.org/10.1088/1361-6463/50/19/193001
73. Jiang L, Tsai HL (2005) Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse. Int J Heat Mass Transfer 48(3–4):487–499. https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.016
74. Guo H, Qiao M, Yan JF et al (2023) Fabrication of hybrid supercapacitor by MoCl5 precursor-assisted carbonization with ultrafast laser for improved capacitance performance. Adv Funct Mater 33(23):2213514. https://doi.org/10.1002/adfm.202213514
75. Pustovalov VK (2016) Light-to-heat conversion and heating of single nanoparticles, their assemblies, and the surrounding medium under laser pulses. RSC Adv 6(84):81266–81289. https://doi.org/10.1039/c6ra11130k
76. Jago R, Malic E, Wendler F (2019) Microscopic origin of the bolometric effect in graphene. Phys Rev B 99(3):035419. https://doi.org/10.1103/PhysRevB.99.035419
77. An JN, Le TSD, Lim CHJ et al (2018) Single-step selective laser writing of flexible photodetectors for wearable optoelectronics. Adv Sci 5(8):1800496. https://doi.org/10.1002/advs.201800496
78. Deng SF, Guo H, Yan JF et al (2023) NIR-UV dual-mode photodetector with the assistance of machine-learning fabricated by hybrid laser processing. Chem Eng J 472:144908. https://doi.org/10.1016/j.cej.2023.144908
79. McDonald JC, Duffy DC, Anderson JR et al (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21(1):27–40. https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1%3c27::AID-ELPS27%3e3.0.CO;2-C
80. Jeong SY, Lee JU, Hong SM et al (2021) Highly skin-conformal laser-induced graphene-based human motion monitoring sensor. Nanomaterials 11(4):951. https://doi.org/10.3390/nano11040951
81. Wang H, Zhao ZF, Liu PP et al (2021) Laser-induced porous graphene on polyimide/PDMS composites and its kirigami-inspired strain sensor. Theor Appl Mech Lett 11(2):100204. https://doi.org/10.1016/j.taml.2021.100240
82. Awasthi H, Jayapiriya US, Renuka H et al (2023) Flexible paper and cloth substrates with conductive laser induced graphene traces for electroanalytical sensing, energy harvesting and supercapacitor applications. IEEE Sens J 23(20):24078–24085. https://doi.org/10.1109/jsen.2022.3170538
83. Cho EC, Chang-Jian CW, Syu WL et al (2020) PEDOT-modified laser-scribed graphene films as bginder– and metallic current collector–free electrodes for large-sized supercapacitors. Appl Surf Sci 518:146193. https://doi.org/10.1016/j.apsusc.2020.146193
84. Bai SG, Tang Y, Chen G et al (2021) Phosphor copper-based flexible high voltage supercapacitors fabricated via laser irradiation and three-dimensional packaging. J Power Sources 507:230257. https://doi.org/10.1016/j.jpowsour.2021.230257
85. Kong X, Gai P, Ge L et al (2020) Laser-scribed N-doped graphene for integrated flexible enzymatic biofuel cells. ACS Sustain Chem Eng 8(33):12437–12442. https://doi.org/10.1021/acssuschemeng.0c03051
86. Kalasin S, Sangnuang P, Surareungchai W (2021) Wearable triboelectric sensors with self-powered energy: multifunctional laser-engraved electrets to activate satellite communication for life-emergency alert in pandemics. ACS Appl Electron Mater 3(12):5383–5392. https://doi.org/10.1021/acsaelm.1c00865
87. Xia SY, Long YF, Huang ZY et al (2022) Laser-induced graphene (LIG)-based pressure sensor and triboelectric nanogenerator towards high-performance self-powered measurement-control combined system. Nano Energy 96:107099. https://doi.org/10.1016/j.nanoen.2022.107099
88. Kim D, Chhetry A, Zahed MA et al (2023) Highly sensitive and reliable piezoresistive strain sensor based on cobalt nanoporous carbon-incorporated laser-induced graphene for smart healthcare wearables. ACS Appl Mater Interfaces 15(1):1475–1485. https://doi.org/10.1021/acsami.2c15500
89. Xu KC, Lu YY, Honda S et al (2019) Highly stable kirigami-structured stretchable strain sensors for perdurable wearable electronics. J Mater Chem C 7(31):9609–9617. https://doi.org/10.1039/c9tc01874c
90. Zhu CC, Tao LQ, Wang Y et al (2020) Graphene oxide humidity sensor with laser-induced graphene porous electrodes. Sens Actuat B Chem 325:128790. https://doi.org/10.1016/j.snb.2020.128790
91. Lu YY, Xu KC, Yang MQ et al (2021) Highly stable Pd/HNb3O8-based flexible humidity sensor for perdurable wireless wearable applications. Nanoscale Horiz 6(3):260–270. https://doi.org/10.1039/d0nh00594k
92. Yang L, Yi N, Zhu J et al (2020) Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities. J Mater Chem A 8(14):6487–6500. https://doi.org/10.1039/c9ta07855j
93. Yang L, Zheng GH, Cao YQ et al (2022) Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. Microsyst Nanoeng 8(1):78. https://doi.org/10.1038/s41378-022-00414-x
94. Lu YY, Fujita Y, Honda S et al (2021) Wireless and flexible skin moisture and temperature sensor sheets toward the study of thermoregulator center. Adv Healthc Mater 10(17):e2100103. https://doi.org/10.1002/adhm.202100103
95. Meng LY, Turner APF, Mak WC (2021) Conducting polymer-reinforced laser-irradiated graphene as a heterostructured 3D transducer for flexible skin patch biosensors. ACS Appl Mater Interfaces 13(45):54456–54465. https://doi.org/10.1021/acsami.1c13164
96. Liao JJ, Zhang XY, Sun ZH et al (2022) Laser-induced graphene-based wearable epidermal ion-selective sensors for noninvasive multiplexed sweat analysis. Biosensors 12(6):397. https://doi.org/10.3390/bios12060397
97. Zhang Y, Li N, Xiang YJ et al (2020) A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon 156:506–513. https://doi.org/10.1016/j.carbon.2019.10.006
98. Yoon H, Nah J, Kim H et al (2020) A chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection. Sens Actuat B Chem 311:127866. https://doi.org/10.1016/j.snb.2020.127866
99. Zhu J, Liu SB, Hu ZH et al (2021) Laser-induced graphene non-enzymatic glucose sensors for on-body measurements. Biosens Bioelectron 193:113606. https://doi.org/10.1016/j.bios.2021.113606
100. Vivaldi F, Dallinger A, Poma N et al (2022) Sweat analysis with a wearable sensing platform based on laser-induced graphene. APL Bioeng 6(3):036104. https://doi.org/10.1063/5.0093301
101. Chen HQ, Mei ZF, Qi KL et al (2022) A wearable enzyme-free glucose sensor based on nickel nanoparticles decorated laser-induced graphene. J Electroanal Chem 920:116585. https://doi.org/10.1016/j.jelechem.2022.116585
102. Chen SW, Cao ZK, Zhou K et al (2023) Screen printing and laser-induced flexible sensors for the simultaneous sensitive detection of uric acid, tyrosine, and ascorbic acid in sweat. Analyst 148(13):2965–2974. https://doi.org/10.1039/d3an00591g
103. Lu YY, Xu KC, Zhang LS et al (2020) Multimodal plant healthcare flexible sensor system. ACS Nano 14(9):10966–10975. https://doi.org/10.1021/acsnano.0c03757
104. Peng B, Wu XY, Zhang C et al (2019) A flexible and fully integrated wearable pressure sensing chip system for multi-scenario applications. J Mater Chem A 9(47):26875–26884. https://doi.org/10.1039/d1ta08584k
105. Li CC, Chen HM, Zhang SC et al (2022) Wearable and biocompatible blood oxygen sensor based on heterogeneously integrated lasers on a laser-induced graphene electrode. ACS Appl Electron Mater 4(4):1583–1591. https://doi.org/10.1021/acsaelm.1c01269
106. Garland NT, Schmieder J, Johnson ZT et al (2023) Wearable flexible perspiration biosensors using laser-induced graphene and polymeric tape microfluidics. ACS Appl Mater Interfaces 15(32):38201–38213. https://doi.org/10.1021/acsami.3c04665
107. Xu KC, Li QA, Lu YY et al (2023) Laser direct writing of flexible thermal flow sensors. Nano Lett 23(22):10317–10325. https://doi.org/10.1021/acs.nanolett.3c02891
108. Lu YY, Kong DP, Yang G et al (2023) Machine learning-enabled tactile sensor design for dynamic touch decoding. Adv Sci 10(32):e2303949. https://doi.org/10.1002/advs.202303949
109. Kim D, Bang J, Won P et al (2020) Biocompatible cost-effective electrophysiological monitoring with oxidation-free Cu–Au core–shell nanowire. Adv Mater Technol 5(12):2000661. https://doi.org/10.1002/admt.202000661
110. Kedambaimoole V, Kumar N, Shirhatti V et al (2020) Laser-induced direct patterning of free-standing Ti3C2-MXene films for skin conformal tattoo sensors. ACS Sens 5(7):2086–2095. https://doi.org/10.1021/acssensors.0c00647
111. Chen KY, Gao C, Lu B et al (2022) A facile laser assisted paste-tear approach to large area, flexible and wearable in-plane micro-supercapacitors. J Power Sour 532:231346. https://doi.org/10.1016/j.jpowsour.2022.231346
112. Jiang XN, Zhao XP, Sun YX et al (2023) Laser-patterned PEDOT:PSS-aramid nanofiber composite electrodes for in-plane supercapacitors with high performance, shape-diversity and ultrahigh deformation resistance. Chem Eng J 462:142209. https://doi.org/10.1016/j.cej.2023.142209
113. Huang KY, Ning HM, Hu N et al (2020) Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process. Compos Sci Technol 192:108105. https://doi.org/10.1016/j.compscitech.2020.108105
114. Du XY, Shi JJ, Chen ZC et al (2020) A laser etched zinc ion microbattery with excellent flexibility and self-healability. Sustain Energy Fuels 4(9):4713–4721. https://doi.org/10.1039/d0se00843e
115. Ye XH, Qi M, Yang YF et al (2020) Pattern directive sensing selectivity of graphene for wearable multifunctional sensors via femtosecond laser fabrication. Adv Mater Technol 5(11):2000466. https://doi.org/10.1002/admt.202000446
116. Liu XM, Ueki T, Gao HY et al (2022) Microbial biofilms for electricity generation from water evaporation and power to wearables. Nat Commun 13(1):4369. https://doi.org/10.1038/s41467-022-32105-6
117. Yu YD, Zhu W, Wang YL et al (2020) Towards high integration and power density: zigzag-type thin-film thermoelectric generator assisted by rapid pulse laser patterning technique. Appl Energy 275:115404. https://doi.org/10.1016/j.apenergy.2020.115404
118. Lu YG, Ru S, Li H et al (2023) Laser-structured microarray electrodes for durable stretchable lithium-ion battery. J Colloid Interface Sci 631(Pt B):1–7. https://doi.org/10.1016/j.jcis.2022.11.024
119. Zhang S, Fei WJ, Jiang Q et al (2021) Facile fabrication of sensitivity-tunable strain sensors based on laser-patterned micro-nano structures. J Micromech Microeng 31(8):85003. https://doi.org/10.1088/1361-6439/ac0b32
120. Cho H, Jo S, Kim I et al (2021) Film-sponge-coupled triboelectric nanogenerator with enhanced contact area based on direct ultraviolet laser ablation. ACS Appl Mater Interfaces 13(40):48281–48291. https://doi.org/10.1021/acsami.1c14572
121. Liu W, Zhu CL, Wu DW et al (2020) Flexible piezoelectric micro ultrasonic transducer based on a laser processed substrate. In: IEEE International Ultrasonics Symposium, p.1–4. https://doi.org/10.1109/IUS46767.2020.9251364
122. Du QF, Liu LL, Tang RT et al (2021) High-performance flexible pressure sensor based on controllable hierarchical microstructures by laser scribing for wearable electronics. Adv Mater Technol 6(9):2100122. https://doi.org/10.1002/admt.202100122
123. Carr AR, Patel YH, Neff CR et al (2020) Sweat monitoring beneath garments using passive, wireless resonant sensors interfaced with laser-ablated microfluidics. npj Digit Med 3(1):62. https://doi.org/10.1038/s41746-020-0270-2
124. Xu ZY, Song JY, Liu BR et al (2021) A conducting polymer PEDOT:PSS hydrogel based wearable sensor for accurate uric acid detection in human sweat. Sens Actuat B Chem 348:130674. https://doi.org/10.1016/j.snb.2021.130674
125. Wolfe DB, Ashcom JB, Hwang JC et al (2003) Customization of poly(dimethylsiloxane) stamps by micromachining using a femtosecond-pulsed laser. Adv Mater 15(1):62–65. https://doi.org/10.1002/adma.200390012
126. Shin J, Ko J, Jeong S et al (2021) Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis. Nat Mater 20(1):100–107. https://doi.org/10.1038/s41563-020-0769-6
127. Lim J, Park S, Cho H et al (2022) Monolithic digital patterning of polyimide by laser-induced pyrolytic jetting. Chem Eng J 428:131050. https://doi.org/10.1016/j.cej.2021.131050
128. Kim C, Hwang E, Kwon J et al (2023) Plastic shavings by laser: peeling porous graphene springs for multifunctional all-carbon applications. Adv Sci 10(21):e2301208. https://doi.org/10.1002/advs.202301208
129. Lee J, Sul H, Lee W et al (2020) Stretchable skin-like cooling/heating device for reconstruction of artificial thermal sensation in virtual reality. Adv Funct Mater 30(29):1909171. https://doi.org/10.1002/adfm.201909171
130. Lee J, Sul H, Jung Y et al (2020) Thermally controlled, active imperceptible artificial skin in visible-to-infrared range. Adv Funct Mater 30(36):2203328. https://doi.org/10.1002/adfm.202003328
131. Wang YL, Zhu W, Deng Y et al (2020) Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator. Nano Energy 73:104773. https://doi.org/10.1016/j.nanoen.2020.104773
132. Escobedo P, de Pablos-Florido J, Carvajal MA et al (2020) The effect of bending on laser-cut electro-textile inductors and capacitors attached on denim as wearable structures. Text Res J 90(21–22):2355–2366. https://doi.org/10.1177/0040517520920570
133. Jeong H, Feng JR, Kim J (2022) 2.5D laser-cutting-based customized fabrication of long-term wearable textile sEMG sensor: from design to intention recognition. IEEE Robot Autom Lett 7(4):10367–10374. https://doi.org/10.1109/lra.2022.3190620
134. Lipovka A, Fatkullin M, Shchadenko S et al (2023) Textile electronics with laser-induced graphene/polymer hybrid fibers. ACS Appl Mater Interfaces 15(32):38946–38955. https://doi.org/10.1021/acsami.3c06968
135. Yang GY, Ding YH, Liu L et al (2023) Mechanism and technology of laser selective removal of multilayer materials. J Mater Process Technol 312:117868. https://doi.org/10.1016/j.jmatprotec.2023.117868
136. Ding JM, Zou S, Choi J et al (2020) A laser texturing study on multi-crystalline silicon solar cells. Solar Energy Mater Solar Cell 214:110587. https://doi.org/10.1016/j.solmat.2020.110587
137. Abbott M, Cotter J (2006) Optical and electrical properties of laser texturing for high-efficiency solar cells. Prog Photovoltaics Res Appl 14(3):225–235. https://doi.org/10.1002/pip.667
138. Bondarev A, Simonovic K, Vitu T et al (2023) Textured coating or coated texture: femtosecond laser texturing of a-C:H/WC coatings for dry friction applications. Surf Coat Technol 469:129808. https://doi.org/10.1016/j.surfcoat.2023.129808
139. Shivakoti I, Kibria G, Cep R et al (2021) Laser surface texturing for biomedical applications: a review. Coatings 11(2):124. https://doi.org/10.3390/coatings11020124
140. Hwang E, Lee Y, Lim J et al (2021) Selective laser pyrolytic micropatterning of stretched elastomeric polymer surfaces. Int J Precis Eng Manuf Green Technol 8(3):795–804. https://doi.org/10.1007/s40684-020-00292-6
141. Zhang JZ, Yong JL, Zhang CJ et al (2020) Liquid metal-based reconfigurable and repairable electronics designed by a femtosecond laser. ACS Appl Electron Mater 2(8):2685–2691. https://doi.org/10.1021/acsaelm.0c00591
142. Zhang JZ, Zhang KY, Yong JL et al (2020) Femtosecond laser preparing patternable liquid-metal-repellent surface for flexible electronics. J Colloid Interface Sci 578:146–154. https://doi.org/10.1016/j.jcis.2020.05.055
143. Zhang CJ, Li ZK, Li HY et al (2022) Femtosecond laser-induced supermetalphobicity for design and fabrication of flexible tactile electronic skin sensor. ACS Appl Mater Interfaces 14(33):38328–38338. https://doi.org/10.1021/acsami.2c08835
144. Liang ST, Chen XY, Li FJ et al (2022) Laser-engraved liquid metal circuit for wearable electronics. Bioengineering 9(2):59. https://doi.org/10.3390/bioengineering9020059
145. Xu KC, Fujita Y, Lu YY et al (2021) A wearable body condition sensor system with wireless feedback alarm functions. Adv Mater 33(18):e2008701. https://doi.org/10.1002/adma.202008701
146. Koh EH, Lee WC, Choi YJ et al (2021) A wearable surface-enhanced Raman scattering sensor for label-free molecular detection. ACS Appl Mater Interfaces 13(2):3024–3032. https://doi.org/10.1021/acsami.0c18892
147. Yu J, Yang H, Wu JG et al (2023) Ultrafast laser fabrication of surface-enhanced Raman scattering sensors. Opto-Electron Eng 50(3):220333. https://doi.org/10.12086/oee.2023.220333
148. Yang H, Gun XY, Pang GH et al (2021) Femtosecond laser patterned superhydrophobic/hydrophobic SERS sensors for rapid positioning ultratrace detection. Opt Express 29(11):16904–16913. https://doi.org/10.1364/OE.423789
149. Yu J, Wu JG, Yang H et al (2022) Extremely sensitive SERS sensors based on a femtosecond laser-fabricated superhydrophobic/-philic microporous platform. ACS Appl Mater Interfaces 14(38):43877–43885. https://doi.org/10.1021/acsami.2c10381
150. Fatkullin M, Rodriguez RD, Petrov I et al (2023) Molecular plasmonic silver forests for the photocatalytic-driven sensing platforms. Nanomaterials 13(5):923. https://doi.org/10.3390/nano13050923
151. Zhou WP, Yu YC, Bai S et al (2021) Laser direct writing of waterproof sensors inside flexible substrates for wearable electronics. Opt Laser Technol 135:106694. https://doi.org/10.1016/j.optlastec.2020.106694
152. Pitkanen O, Eraslan T, Sebok D et al (2020) Flexible planar supercapacitors by straightforward filtration and laser processing steps. Nanotechnology 31(49):495403. https://doi.org/10.1088/1361-6528/abb336
153. Nguyen PT, Jang J, Lee Y et al (2021) Laser-assisted fabrication of flexible monofilament fiber supercapacitors. J Mater Chem A 9(8):4841–4850. https://doi.org/10.1039/d0ta10283k
154. Lim J, Kim Y, Shin J et al (2020) Continuous-wave laser-induced transfer of metal nanoparticles to arbitrary polymer substrates. Nanomaterials 10(4):701. https://doi.org/10.3390/nano10040701
155. Kim KK, Ha I, Kim M et al (2020) A deep-learned skin sensor decoding the epicentral human motions. Nat Commun 11(1):2149. https://doi.org/10.1038/s41467-020-16040-y
156. Kim KK, Choi J, Kim JH et al (2021) Evolvable skin electronics by in situ and in operando adaptation. Adv Funct Mater 32(4):2106329. https://doi.org/10.1002/adfm.202106329
157. Shin J, Jeong B, Kim J et al (2020) Sensitive wearable temperature sensor with seamless monolithic integration. Adv Mater 32(2):e1905527. https://doi.org/10.1002/adma.201905527
158. Cui SY, Lu YY, Kong DP et al (2023) Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors. Opto-Electron Adv 6(7):220172. https://doi.org/10.29026/oea.2023.220172
159. Kim M, Cho C, Shin W et al (2022) Nanowire-assisted freestanding liquid metal thin-film patterns for highly stretchable electrodes on 3D surfaces. npj Flex Electron 6(1):99. https://doi.org/10.1038/s41528-022-00232-1
160. Kim M, Park JJ, Cho C et al (2023) Liquid metal based stretchable room temperature soldering sticker patch for stretchable electronics integration. Adv Funct Mater 33(36):2303286. https://doi.org/10.1002/adfm.202303286
161. Kim H, Choi J, Kim KK et al (2021) Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nat Commun 12(1):4658. https://doi.org/10.1038/s41467-021-24916-w
162. Yeo J, Hong S, Kim G et al (2015) Laser-induced hydrothermal growth of heterogeneous metal-oxide nanowire on flexible substrate by laser absorption layer design. ACS Nano 9(6):6059–6068. https://doi.org/10.1021/acsnano.5b01125
163. Mun J, Kong H, Lee J et al (2023) Enhanced photocurrent performance of flexible micro-photodetector based on PN nanowires heterojunction using all-laser direct patterning. Adv Funct Mater 33(24):2214950. https://doi.org/10.1002/adfm.202214950
164. Liang SY, Dai YZ, Wang G et al (2020) Room-temperature fabrication of SiC microwire photodetectors on rigid and flexible substrates via femtosecond laser direct writing. Nanoscale 12(45):23200–23205. https://doi.org/10.1039/d0nr05299j
165. Dai YZ, Liang SY, Lv C et al (2020) Controllably fabricated single microwires from Pd-WO3•xH2O nanoparticles by femtosecond laser for faster response ammonia sensors at room temperature. Sens Actuat B Chem 316:128122. https://doi.org/10.1016/j.snb.2020.128122
166. Chang PY, Lin CF, El Khoury RS et al (2020) Near-infrared laser-annealed IZO flexible device as a sensitive H2S sensor at room temperature. ACS Appl Mater Interfaces 12(22):24984–24991. https://doi.org/10.1021/acsami.0c03257
167. Gao L, Wang XH, Dai WT et al (2020) Laser direct writing assisted fabrication of skin compatible metal electrodes. Adv Mater Technol 5(5):2000012. https://doi.org/10.1002/admt.202000012
168. Zhang YL, Lu HL, Li M et al (2021) Near-infrared laser “weldable” hydrogen-bonded hydrogel sensor based on photothermal gel–sol transition. ACS Sustain Chem Eng 9(48):16241–16250. https://doi.org/10.1021/acssuschemeng.1c05510
169. Fromme NP, Li YF, Camenzind M et al (2021) Metal-textile laser welding for wearable sensors applications. Adv Electron Mater 7(4):2001238. https://doi.org/10.1002/aelm.202001238
170. Hwang Y, Park B, Hwang S et al (2023) A bioinspired ultra flexible artificial van der Waals 2D-MoS2 channel/LiSiOx solid electrolyte synapse arrays via laser-lift off process for wearable adaptive neuromorphic computing. Small Methods 7(7):e2201719. https://doi.org/10.1002/smtd.202201719
171. Lee J, Jung Y, Lee M et al (2022) Biomimetic reconstruction of butterfly wing scale nanostructures for radiative cooling and structural coloration. Nanoscale Horiz 7(9):1054–1064. https://doi.org/10.1039/d2nh00166g
172. Zhang J, Zhang T, Zhang H et al (2020) Single-crystal SnSe thermoelectric fibers via laser-induced directional crystallization: from 1D fibers to multidimensional fabrics. Adv Mater 32(36):e2002702. https://doi.org/10.1002/adma.202002702
173. Lim J, Goh B, Qu WH et al (2022) Adhesive-free bonding of PI/PDMS interface by site-selective photothermal reactions. Appl Surf Sci 571:151123. https://doi.org/10.1016/j.apsusc.2021.151123
174. Won D, Kim J, Choi J et al (2022) Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Sci Adv 8(23):eabo3209. https://doi.org/10.1126/sciadv.abo3209
175. Kong H, Kwon J, Paeng D et al (2020) Laser-induced crystalline-phase transformation for hematite nanorod photoelectrochemical cells. ACS Appl Mater Interfaces 12(43):48917–48927. https://doi.org/10.1021/acsami.0c11999
176. Bang J, Jung Y, Kim H et al (2022) Multi-bandgap monolithic metal nanowire percolation network sensor integration by reversible selective laser-induced redox. Nanomicro Lett 14(1):49. https://doi.org/10.1007/s40820-021-00786-1
177. Yang YR, Song Y, Bo XJ et al (2020) A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol 38(2):217–224. https://doi.org/10.1038/s41587-019-0321-x
178. Nah JS, Barman SC, Zahed MA et al (2021) A wearable microfluidics-integrated impedimetric immunosensor based on Ti3C2T MXene incorporated laser-burned graphene for noninvasive sweat cortisol detection. Sens Actuat B Chem 329:129206. https://doi.org/10.1016/j.snb.2020.129206
179. Yan WH, Yan WR, Chen TD et al (2020) Size-tunable flowerlike MoS2 nanospheres combined with laser-induced graphene electrodes for NO2 sensing. ACS Appl Nano Mater 3(3):2545–2553. https://doi.org/10.1021/acsanm.9b02614
180. Wang G, Zhang Y, Yang H et al (2020) Fast-response humidity sensor based on laser printing for respiration monitoring. RSC Adv 10(15):8910–8916. https://doi.org/10.1039/c9ra10409g
181. Nam VB, Shin J, Choi A et al (2021) High-temperature, thin, flexible and transparent Ni-based heaters patterned by laser-induced reductive sintering on colorless polyimide. J Mater Chem C 9(17):5652–5661. https://doi.org/10.1039/d1tc00435b
182. Zhang P, Tang XL, Pang Y et al (2020) Flexible laser-induced-graphene omnidirectional sound device. Chem Phys Lett 745:137275. https://doi.org/10.1016/j.cplett.2020.137275
183. Luo HY, Lu YY, Xu YH et al (2022) A fully soft, self-powered vibration sensor by laser direct writing. Nano Energy 103:107803. https://doi.org/10.1016/j.nanoen.2022.107803
184. Song Y, Min JH, Yu Y et al (2020) Wireless battery-free wearable sweat sensor powered by human motion. Sci Adv 6(40):eaay9842. https://doi.org/10.1126/sciadv.aay9842
185. Velmurugan R, Alagammai P, Ulaganathan M et al (2020) High performance in situ annealed partially pressurized pulsed laser deposited WO3 & V2O5 thin film electrodes for use as flexible all solid state supercapbatteries. J Mater Chem A 8(45):24148–24165. https://doi.org/10.1039/d0ta07683j
186. Capuron L, Schroecksnadel S, Feart C et al (2011) Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol Psychiatry 70(2):175–182. https://doi.org/10.1016/j.biopsych.2010.12.006
187. Major TJ, Dalbeth N, Stahl EA et al (2018) An update on the genetics of hyperuricaemia and gout. Nat Rev Rheumatol 14(6):341–353. https://doi.org/10.1038/s41584-018-0004-x
188. Nayak P, Kurra N, Xia C et al (2016) Highly efficient laser scribed graphene electrodes for on-chip electrochemical sensing applications. Adv Electron Mater 2(10):1600185. https://doi.org/10.1002/aelm.201600185
189. Griffiths K, Dale C, Hedley J et al (2014) Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensors. Nanoscale 6(22):13613–13622. https://doi.org/10.1039/c4nr04221b
190. Lu YY, Yang G, Wang SQ et al (2023) Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat Electron 7(1):51–65. https://doi.org/10.1038/s41928-023-01091-y
191. Le TSD, Phan HP, Kwon S et al (2022) Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics. Adv Funct Mater 32(48):2205258. https://doi.org/10.1002/adfm.202205158
192. Noh J, Ha J, Kim D (2020) Femtosecond and nanosecond laser sintering of silver nanoparticles on a flexible substrate. Appl Surf Sci 511:145574. https://doi.org/10.1016/j.apsusc.2020.145574
193. Park M, Gu YR, Mao XL et al (2023) Mechanisms of ultrafast GHz burst fs laser ablation. Sci Adv 9(12):eadf6397.
关于本刊
Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。
初审迅速:初审快速退稿,不影响作者投其它期刊。
审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。
收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。
文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。
期刊主页:
http://www.springer.com/journal/42242
http://www.jzus.zju.edu.cn/ (国内可下载全文)
在线投稿地址:
http://www.editorialmanager.com/bdmj/default.aspx
入群交流
围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码