深圳大学刁东风/张希团队 | 一种基于混配位电子俘获效应的高精度触摸屏

文摘   2024-08-10 18:42   浙江  

内容简介


本研究论文聚焦于一种基于混配位电子俘获效应的互电容式触摸屏及其应用的探究。触摸屏,作为数字化时代的代表器件类型,在可穿戴设备中扮演着至关重要的角色。新型碳纳米材料(如碳纳米管、石墨烯等)为研发高性能柔性触摸屏提供了新路径。然而,当这些材料与柔性基板堆叠以形成电容触摸传感器时,常常会在受形变时发生材料-基板剥离现象,导致触摸屏识别失准,降低柔性触摸屏应用范围。在本研究中,我们使用电子回旋共振系统(ECR)在柔性基板上直接原位沉积了石墨烯-金属纳米薄膜(GMNF),避免了材料-基板剥离现象的发生。通过该方法制备出的基于感应电荷的互电容式触摸传感器,能够实现高精度的触摸感应,极大地拓展了触摸屏的应用范围。在GMNF中,铜纳米粒子和垂直生长的石墨烯纳米片之间形成的混配位使得该材料具有电子俘获效应。它们紧密地附着在柔性基板上,经过3000次弯折后,触摸灵敏度未发生明显降低。基于此器件的交互触摸系统具有41.16 dB的高信噪比和650 dpi的分辨率。通过手写中文字符识别测试,该触控系统对中文字符识别准确率高达94.82%。这些结果显示了直接沉积制备的GMNF触摸屏传感器具有极佳的稳定性和识别能力,在可穿戴设备方面具有良好的应用前景。


引用本文(点击最下方阅读原文可下载PDF)

Zhang X, Ma J, Deng H, et al., 2024. A mixed-coordination electron trapping-enabled high-precision touch-sensitive screen for wearable devices. Bio-des Manuf 7(4):413–427. https://doi.org/10.1007/s42242-024-00293-3

文章导读



图1 电子回旋共振(ECR)系统及基于感应电荷的互电容式触摸屏总览


图2 石墨烯金属纳米薄膜表征


图3 单个互点容式传感器


图4 触摸屏测试


图5 基于该触摸屏的手写汉字识别

参考文献

上下滑动以阅览

1. Han SJ, Liu CR, Xu HH et al (2018) Multiscale nanowire-microfluidic hybrid strain sensors with high sensitivity and stretchability. npj Flex Electron 2(1):16. https://doi.org/10.1038/s41528-018-0029-x

2. Lee J, Kwon H, Seo J et al (2015) Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater 27(15):2433–2439. https://doi.org/10.1002/adma.201500009

3. Lu YY, Yang G, Wang SQ et al (2024) Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat Electron 7:51–65. https://doi.org/10.1038/s41928-023-01091-y

4. Chen WF, Yan X (2020) Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: a review. J Mater Sci Technol 43:175–188. https://doi.org/10.1016/j.jmst.2019.11.010

5. Gao X, Zheng MP, Yan XD et al (2019) The alignment of BCZT ps in PDMS boosts the sensitivity and cycling reliability of a flexible piezoelectric touch sensor. J Mater Chem C 7(4):961–967. https://doi.org/10.1039/c8tc04741c

6. Zhang YR, Jen YH, Mo CT et al (2020) Realization of multistage detection sensitivity and dynamic range in capacitive tactile sensors. IEEE Sens J 20(17):9724–9732. https://doi.org/10.1109/Jsen.2020.2992484

7. Cui SY, Lu YY, Kong DP et al (2023) Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors. Opto-Electron Adv 6(7):220172. https://doi.org/10.29026/oea.2023.220172

8. Kim SJ, Phung TH, Kim S et al (2020) Low-cost fabrication method for thin, flexible, and transparent touch screen sensors. Adv Mater Technol 5(9):2000441. https://doi.org/10.1002/admt.202000441

9. Ziaei S, Wu Q, Fitch J et al (2019) Channel cracking and interfacial delamination of indium tin oxide (ITO) nano-sized films on polyethylene terephthalate (PET) substrates: experiments and modeling. Exp Mech 59(5):703–712. https://doi.org/10.1007/s11340-019-00534-y

10. Wang X, Xiong Z, Liu Z et al (2015) Exfoliation at the liquid/air interface to assemble reduced graphene oxide ultrathin films for a flexible noncontact sensing device. Adv Mater 27(8):1370–1375. https://doi.org/10.1002/adma.201404069

11. Fu X, Zhang JQ, Xiao JL et al (2021) A high-resolution, ultrabroad-range and sensitive capacitive tactile sensor based on a CNT/PDMS composite for robotic hands. Nanoscale 13(44):18780–18788. https://doi.org/10.1039/d1nr03265h

12. Zhang ZA, Gui XC, Hu QM et al (2021) Highly sensitive capacitive pressure sensor based on a micropyramid array for health and motion monitoring. Adv Electron Mater 7(7):2100174. https://doi.org/10.1002/aelm.202100174

13. Zhang JQ, Wan LJ, Gao Y et al (2019) Highly stretchable and self-healable MXene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin. Adv Electron Mater 5(7):1900285. https://doi.org/10.1002/aelm.201900285

14. Hu WL, Niu XF, Zhao R et al (2013) Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Appl Phys Lett 102:083303. https://doi.org/10.1063/1.4794143

15. Cheng L, Qian JC, Ruan DQ et al (2023) Flexible and highly sensitive sandwich-structured PDMS with silver nanowires and laser-induced graphene for rapid residue detection. ACS Appl Polym Mater 5(4):2336–2344. https://doi.org/10.1021/acsapm.2c02011

16. Wan YB, Qiu ZG, Hong Y et al (2018) A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures. Adv Electron Mater 4(4):1700586. https://doi.org/10.1002/aelm.201700586

17. Chen WQ, Xiao PS, Chen HH et al (2019) Polymeric graphene bulk materials with a 3D cross-linked monolithic graphene network. Adv Mater 31(9):1802403. https://doi.org/10.1002/adma.201802403

18. Lee C, Wei XD, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388. https://doi.org/10.1126/science.1157996

19. Akhavan O, Ghaderi E, Shirazian SA et al (2016) Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells. Carbon 97:71–77. https://doi.org/10.1016/j.carbon.2015.06.079

20. Gu SY, Hsieh CT, Lin TW et al (2018) Atomic layer oxidation on graphene sheets for tuning their oxidation levels, electrical conductivities, and band gaps. Nanoscale 10(33):15521–15528. https://doi.org/10.1039/c8nr04013c

21. Nazarloo AS, Ahmadian MT, Firoozbakhsh K (2019) On the mechanical characteristics of graphene nanosheets: a fully nonlinear modified morse model. Nanotechnology 31(11):115708. https://doi.org/10.1088/1361-6528/ab598e

22. López V, Sundaram RS, Gómez-Navarro C et al (2009) Chemical vapor deposition repair of graphene oxide: a route to highly-conductive graphene monolayers. Adv Mater 21(46):4683–4686. https://doi.org/10.1002/adma.200901582

23. Qin J, Yin LJ, Hao YN et al (2021) Flexible and stretchable capacitive sensors with different microstructures. Adv Mater 33(34):2008267. https://doi.org/10.1002/adma.202008267

24. Yang J, Luo S, Zhou X et al (2019) Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl Mater Interfaces 11(16):14997–15006. https://doi.org/10.1021/acsami.9b02049

25. Luo S, Yang J, Song XF et al (2018) Tunable-sensitivity flexible pressure sensor based on graphene transparent electrode. Solid-State Electron 145:29–33. https://doi.org/10.1016/j.sse.2018.04.003

26. Zhang Y, Yang JL, Hou XY et al (2022) Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat Commun 13(1):1317. https://doi.org/10.1038/s41467-022-29093-y

27. Chen SC, Wang YF, Yang L et al (2020) Electron-induced perpendicular graphene sheets embedded porous carbon film for flexible touch sensors. Nano-Micro Lett 12(1):136. https://doi.org/10.1007/s40820-020-00480-8

28. Zhang X, Ma JC, Huang WH et al (2023) Direct fabrication of flexible tensile sensors enabled by polariton energy transfer based on graphene nanosheet films. Nanotech Precis Eng 6:013001. https://doi.org/10.1063/10.0016758

29. Zhang X, Tian LL, Diao DF (2021) High-response heterojunction phototransistor based on vertically grown graphene nanosheets film. Carbon 172:720–728. https://doi.org/10.1016/j.carbon.2020.10.054

30. Sarakinos K, Alami J, Konstantinidis S (2010) High power pulsed magnetron sputtering: a review on scientific and engineering state of the art. Surf Coat Technol 204(11):1661–1684. https://doi.org/10.1016/j.surfcoat.2009.11.013

31. Liu WJ, Liu R, Yu PF et al (2015) Device/circuit mixed-mode simulations for analysis and design of projected-capacitive touch sensors. J Disp Technol 11(2):204–208. https://doi.org/10.1109/Jdt.2014.2370453

32. Lyu C, Wen B, Bai YZ et al (2023) Bone-inspired (GNEC/HAPAAm) hydrogel with fatigue-resistance for use in underwater robots and highly piezoresistive sensors. Microsyst Nanoeng 9(1):99. https://doi.org/10.1038/s41378-023-00571-7

33. Chen Y, Li N, Hoagland RG et al (2020) Effects of three-dimensional Cu/Nb interfaces on strengthening and shear banding in nanoscale metallic multilayers. Acta Mater 199:593–601. https://doi.org/10.1016/j.actamat.2020.08.019

34. Yoo SJ, Kim CY, Shin JW et al (2013) Characterization of an amorphous carbon film covering a Mo grid during in situ heating TEM study. Mater Charact 78:31–36. https://doi.org/10.1016/j.matchar.2013.01.011

35. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112(11):4406–4417. https://doi.org/10.1021/jp7108785

36. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107. https://doi.org/10.1103/PhysRevB.61.14095

37. Lin ZZ, Hirao H, Sun CQ et al (2020) C–H oxidation enhancement on a gold nanoisland by atomic-undercoordination induced polarization. Phys Chem Chem Phys 22(26):14458–14464. https://doi.org/10.1039/d0cp01117g

38. Sun CQ, Wang Y, Nie YG et al (2009) Adatoms-induced local bond contraction, quantum trap depression, and charge polarization at Pt and Rh surfaces. J Phys Chem C 113(52):21889–21894. https://doi.org/10.1021/jp908220a

39. Thoresen CB, Hanke U (2017) Numerical simulation of mutual capacitance touch screens for ungrounded objects. IEEE Sens J 17(16):5143–5152. https://doi.org/10.1109/Jsen.2017.2721743

40. Zhao J, He CL, Yang R et al (2012) Ultra-sensitive strain sensors based on piezoresistive nanographene films. Appl Phys Lett 101(6):063112. https://doi.org/10.1063/1.4742331

41. Zhu LF, Wang YC, Mei DQ et al (2020) Fully elastomeric fingerprint-shaped electronic skin based on tunable patterned graphene/silver nanocomposites. ACS Appl Mater Interfaces 12(28):31725–31737. https://doi.org/10.1021/acsami.0c09653

42. Kwon OK, An JS, Hong SK (2018) Capacitive touch systems with styli for touch sensors: a review. IEEE Sens J 18(12):4832–4846. https://doi.org/10.1109/Jsen.2018.2830660

43. An JS, Ra JH, Kang E et al (2021) A readout IC for capacitive touch screen panels with 33.9 dB charge-overflow reduction using amplitude-modulated multi-frequency excitation. IEEE J Solid-State Circ 56(11):3486–3498. https://doi.org/10.1109/Jssc.2021.3100470

44. Kim HK, Lee S, Yun KS (2011) Capacitive tactile sensor array for touch screen application. Sens Actuat A 165(1):2–7. https://doi.org/10.1016/j.sna.2009.12.031

45. Zhang X, Lin ZZ, Peng D et al (2019) Edge-state-enhanced ultrahigh photoresponsivity of graphene nanosheet-embedded carbon film/silicon heterojunction. Adv Mater Interfaces 6(11):1802062. https://doi.org/10.1002/admi.201802062

46. Zhang X, Peng D, Lin ZZ et al (2019) Edge effect on the photodetection ability of the graphene nanocrystallites embedded carbon film coated on p-silicon. Phys Status Solidi-Rapid Res Lett 13(6):1800511. https://doi.org/10.1002/pssr.201800511

47. Gao SY, Liu L, Lin ZZ et al (2021) High photoresponsivity of vertical graphene nanosheets/P–Si enhanced by electron trapping at edge quantum wells. J Phys Chem C 125(9):5392–5398. https://doi.org/10.1021/acs.jpcc.1c00137

48. Liu CL, Marukawa K (2005) Pseudo two-dimensional shape normalization methods for handwritten Chinese character recognition. Patt Recogn 38(12):2242–2255. https://doi.org/10.1016/j.patcog.2005.04.019

49. Ghosh T, Sen S, Obaidullah SM et al (2022) Advances in online handwritten recognition in the last decades. Comput Sci Rev 46:100515. https://doi.org/10.1016/j.cosrev.2022.100515

50. Zhuang FZ, Qi ZY, Duan KY et al (2021) A comprehensive survey on transfer learning. Proc IEEE 109(1):43–76. https://doi.org/10.1109/Jproc.2020.3004555


关于本刊

Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。


初审迅速:初审快速退稿,不影响作者投其它期刊。

审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。

收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。

文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。


期刊主页:

http://www.springer.com/journal/42242

http://www.jzus.zju.edu.cn/ (国内可下载全文)

在线投稿地址:

http://www.editorialmanager.com/bdmj/default.aspx


入群交流

围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码

生物设计与制造BDM
论文导读、领域资讯
 最新文章