1. Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96(3):183–195. https://doi.org/10.1007/s00223-014-9915-y
2. Gillies AR, Lieber RL (2011) Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44(3):318–331. https://doi.org/10.1002/mus.22094
3. Dziedzic D, Bogacka U, Ciszek B (2014) Anatomy of sartorius muscle. Folia Morphol 73(3):359–362. https://doi.org/10.5603/fm.2014.0037
4. Olfert IM, Baum O, Hellsten Y et al (2016) Advances and challenges in skeletal muscle angiogenesis. Am J Physiol-Heart C 310(3):H326-H336. https://doi.org/10.1152/ajpheart.00635.2015
5. Gholobova D, Terrie L, Gerard M et al (2020) Vascularization of tissue-engineered skeletal muscle constructs. Biomaterials 235:119708. https://doi.org/10.1016/j.biomaterials.2019.119708
6. Granger DN, Senchenkova E (2010) Inflammation and the microcirculation. Colloquium Ser Integr Syst Physiol 2(1):1–87. https://doi.org/10.4199/C00013ED1V01Y201006ISP008
7. Moriscot A, Miyabara EH, Langeani B et al (2021) Firearms-related skeletal muscle trauma: pathophysiology and novel approaches for regeneration. npj Regen Med 6(1):17. https://doi.org/10.1038/s41536-021-00127-1
8. Osaki T, Sivathanu V, Kamm RD (2018) Crosstalk between developing vasculature and optogenetically engineered skeletal muscle improves muscle contraction and angiogenesis. Biomaterials 156:65–76. https://doi.org/10.1016/j.biomaterials.2017.11.041
9. Corona BT, Rivera JC, Owens JG et al (2015) Volumetric muscle loss leads to permanent disability following extremity trauma. J Rehabil Res Dev 52(7):785–792. https://doi.org/10.1682/jrrd.2014.07.0165
10. Stevanovic M, Sharpe F (2014) Functional free muscle transfer for upper extremity reconstruction. Plast Reconstr Surg 134(2):257e–274e. https://doi.org/10.1097/PRS.0000000000000405
11. Zhuang P, An J, Chua CK et al (2020) Bioprinting of 3D in vitro skeletal muscle models: a review. Mater Des 193:108794. https://doi.org/10.1016/j.matdes.2020.108794
12. Choi YJ, Jun YJ, Kim DY et al (2019) A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss. Biomaterials 206:160–169. https://doi.org/10.1016/j.biomaterials.2019.03.036
13. Gilbert-Honick J, Grayson W (2020) Vascularized and innervated skeletal muscle tissue engineering. Adv Healthc Mater 9(1):e1900626. https://doi.org/10.1002/adhm.201900626
14. Beldjilali-Labro M, Garcia AG, Farhat F et al (2018) Biomaterials in tendon and skeletal muscle tissue engineering: current trends and challenges. Materials 11(7):1116. https://doi.org/10.3390/ma11071116
15. Kang HW, Lee SJ, Ko IK et al (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319. https://doi.org/10.1038/nbt.3413
16. Fan TT, Wang S, Jiang ZM et al (2021) Controllable assembly of skeletal muscle-like bundles through 3D bioprinting. Biofabrication 14(1):015009. https://doi.org/10.1088/1758-5090/ac3aca
17. Gilbert-Honick J, Iyer SR, Somers SM et al (2018) Engineering functional and histological regeneration of vascularized skeletal muscle. Biomaterials 164:70–79. https://doi.org/10.1016/j.biomaterials.2018.02.006
18. Pinton L, Khedr M, Lionello VM et al (2023) 3D human induced pluripotent stem cell-derived bioengineered skeletal muscles for tissue, disease and therapy modeling. Nat Protoc 18(4):1337–1376. https://doi.org/10.1038/s41596-022-00790-8
19. Garcia-Cruz MR, Postma A, Frith JE et al (2021) Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Biofabrication 13(3):35032. https://doi.org/10.1088/1758-5090/abec2d
20. Laschke MW, Harder Y, Amon M et al (2006) Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng 12(8):2093–2104. https://doi.org/10.1089/ten.2006.12.2093
21. Miranda I, Souza A, Sousa P et al (2021) Properties and applications of PDMS for biomedical engineering: a review. J Funct Biomater 13(1):2. https://doi.org/10.3390/jfb13010002
22. Gokaltun A, Yarmush ML, Asatekin A et al (2017) Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology. Technology 5(1):1–12. https://doi.org/10.1142/s2339547817300013
23. Schmidt M, Schuler SC, Huttner SS et al (2019) Adult stem cells at work: regenerating skeletal muscle. Cell Mol Life Sci 76(13):2559–2570. https://doi.org/10.1007/s00018-019-03093-6
24. Bersini S, Yazdi IK, Talo G et al (2016) Cell-microenvironment interactions and architectures in microvascular systems. Biotechnol Adv 34(6):1113–1130. https://doi.org/10.1016/j.biotechadv.2016.07.002
25. Chal J, Pourquie O (2017) Making muscle: skeletal myogenesis in vivo and in vitro. Development 144(12):2104–2122. https://doi.org/10.1242/dev.151035
26. Kim JH, Seol YJ, Ko IK et al (2018) 3D bioprinted human skeletal muscle constructs for muscle function restoration. Sci Rep 8(1):12307. https://doi.org/10.1038/s41598-018-29968-5
27. Distler T, Solisito AA, Schneidereit D et al (2020) 3D printed oxidized alginate-gelatin bioink guides C2C12 muscle precursor cell orientation and differentiation via shear stress during bioprinting. Biofabrication 12(4):045005. https://doi.org/10.1088/1758-5090/ab98e4
28. Kaczmarek B, Nadolna K, Owczarek A (2020) The physical and chemical properties of hydrogels based on natural polymers. In: Chen Y (Ed.), Hydrogels Based on Natural Polymers. Elsevier, Amsterdam, p.151–172. https://doi.org/10.1016/B978-0-12-816421-1.00006-9
29. Kolesky DB, Truby RL, Gladman AS et al (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130. https://doi.org/10.1002/adma.201305506
30. Yu J, Wang K, Fan CC et al (2021) An ultrasoft self-fused supramolecular polymer hydrogel for completely preventing postoperative tissue adhesion. Adv Mater 33(16):e2008395. https://doi.org/10.1002/adma.202008395
31. Saroia J, Yanen W, Wei QH et al (2018) A review on biocompatibility nature of hydrogels with 3D printing techniques, tissue engineering application and its future prospective. Bio-Des Manuf 1(4):265–279. https://doi.org/10.1007/s42242-018-0029-7
32. Dietrich M, Heselhaus J, Wozniak J et al (2013) Fibrin-based tissue engineering: comparison of different methods of autologous fibrinogen isolation. Tissue Eng Part C 19(3):216–226. https://doi.org/10.1089/ten.tec.2011.0473
33. Kang DH, Louis F, Liu H et al (2021) Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nat Commun 12(1):5059. https://doi.org/10.1038/s41467-021-25236-9
34. Jain RK, Au P, Tam J et al (2005) Engineering vascularized tissue. Nat Biotechnol 23(7):821–830. https://doi.org/10.1038/nbt0705-821
35. Dejana E, Orsenigo F (2013) Endothelial adherens junctions at a glance. J Cell Sci 126(12):2545–2549. https://doi.org/10.1242/jcs.124529
36. Sidney LE, Branch MJ, Dunphy SE et al (2014) Concise review: evidence for CD34 as a standard marker for diverse progenitors. Stem Cells 32(6):1380–1389. https://doi.org/10.1002/stem.1661
37. Lertkiatmongkol P, Liao DY, Mei H et al (2016) Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr Opin Hematol 23(3):253–259. https://doi.org/10.1097/moh.0000000000000239