【封面文章】中国科学院动物研究所顾奇团队 | 3D打印骨骼肌的血管化研究

文摘   2024-10-04 16:48   浙江  

内容简介


本研究论文提出一种构建血管化骨骼肌的策略。在复杂的骨骼肌组织结构中,肌管与其支撑脉管系统之间的协同关系对于骨骼肌功能至关重要。本研究探讨了骨骼肌细胞和内皮细胞在构建血管化肌肉组织过程中的相互作用。我们利用生物三维打印和模型构建提出了一种内外分层组装策略,用于内皮细胞和肌肉细胞的共培养以及分化。结果表明在肌肉分化后期阶段引入内皮细胞能够增强肌管的组装,同时促进血管网络的形成。该研究展示了肌肉细胞与内皮细胞之间微妙平衡及互作关系,为将来构建血管化、大尺度、取向性骨骼肌组织提供理论技术支持。


引用本文(点击最下方阅读原文可下载PDF)

Jia M, Fan T, Jia T, et al., 2024. Temporal and spatial regulation of biomimetic vascularization in 3D-printed skeletal muscles. Bio-des Manuf 7(5):597–610. https://doi.org/10.1007/s42242-024-00315-0

文章导读



图1 通过3D打印构建骨骼肌


图2 血管化骨骼肌构建策略


图3 优化血管化骨骼肌培养条件


图4 探究血管内皮细胞与骨骼肌的复合时间


图5 血管化骨骼肌中的肌管分化及血管形成

参考文献

上下滑动以阅览

1. Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96(3):183–195. https://doi.org/10.1007/s00223-014-9915-y

2. Gillies AR, Lieber RL (2011) Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44(3):318–331. https://doi.org/10.1002/mus.22094

3. Dziedzic D, Bogacka U, Ciszek B (2014) Anatomy of sartorius muscle. Folia Morphol 73(3):359–362. https://doi.org/10.5603/fm.2014.0037

4. Olfert IM, Baum O, Hellsten Y et al (2016) Advances and challenges in skeletal muscle angiogenesis. Am J Physiol-Heart C 310(3):H326-H336. https://doi.org/10.1152/ajpheart.00635.2015

5. Gholobova D, Terrie L, Gerard M et al (2020) Vascularization of tissue-engineered skeletal muscle constructs. Biomaterials 235:119708. https://doi.org/10.1016/j.biomaterials.2019.119708

6. Granger DN, Senchenkova E (2010) Inflammation and the microcirculation. Colloquium Ser Integr Syst Physiol 2(1):1–87. https://doi.org/10.4199/C00013ED1V01Y201006ISP008

7. Moriscot A, Miyabara EH, Langeani B et al (2021) Firearms-related skeletal muscle trauma: pathophysiology and novel approaches for regeneration. npj Regen Med 6(1):17. https://doi.org/10.1038/s41536-021-00127-1

8. Osaki T, Sivathanu V, Kamm RD (2018) Crosstalk between developing vasculature and optogenetically engineered skeletal muscle improves muscle contraction and angiogenesis. Biomaterials 156:65–76. https://doi.org/10.1016/j.biomaterials.2017.11.041

9. Corona BT, Rivera JC, Owens JG et al (2015) Volumetric muscle loss leads to permanent disability following extremity trauma. J Rehabil Res Dev 52(7):785–792. https://doi.org/10.1682/jrrd.2014.07.0165

10. Stevanovic M, Sharpe F (2014) Functional free muscle transfer for upper extremity reconstruction. Plast Reconstr Surg 134(2):257e–274e. https://doi.org/10.1097/PRS.0000000000000405

11. Zhuang P, An J, Chua CK et al (2020) Bioprinting of 3D in vitro skeletal muscle models: a review. Mater Des 193:108794. https://doi.org/10.1016/j.matdes.2020.108794

12. Choi YJ, Jun YJ, Kim DY et al (2019) A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss. Biomaterials 206:160–169. https://doi.org/10.1016/j.biomaterials.2019.03.036

13. Gilbert-Honick J, Grayson W (2020) Vascularized and innervated skeletal muscle tissue engineering. Adv Healthc Mater 9(1):e1900626. https://doi.org/10.1002/adhm.201900626

14. Beldjilali-Labro M, Garcia AG, Farhat F et al (2018) Biomaterials in tendon and skeletal muscle tissue engineering: current trends and challenges. Materials 11(7):1116. https://doi.org/10.3390/ma11071116

15. Kang HW, Lee SJ, Ko IK et al (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319. https://doi.org/10.1038/nbt.3413

16. Fan TT, Wang S, Jiang ZM et al (2021) Controllable assembly of skeletal muscle-like bundles through 3D bioprinting. Biofabrication 14(1):015009. https://doi.org/10.1088/1758-5090/ac3aca

17. Gilbert-Honick J, Iyer SR, Somers SM et al (2018) Engineering functional and histological regeneration of vascularized skeletal muscle. Biomaterials 164:70–79. https://doi.org/10.1016/j.biomaterials.2018.02.006

18. Pinton L, Khedr M, Lionello VM et al (2023) 3D human induced pluripotent stem cell-derived bioengineered skeletal muscles for tissue, disease and therapy modeling. Nat Protoc 18(4):1337–1376. https://doi.org/10.1038/s41596-022-00790-8

19. Garcia-Cruz MR, Postma A, Frith JE et al (2021) Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Biofabrication 13(3):35032. https://doi.org/10.1088/1758-5090/abec2d

20. Laschke MW, Harder Y, Amon M et al (2006) Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng 12(8):2093–2104. https://doi.org/10.1089/ten.2006.12.2093

21. Miranda I, Souza A, Sousa P et al (2021) Properties and applications of PDMS for biomedical engineering: a review. J Funct Biomater 13(1):2. https://doi.org/10.3390/jfb13010002

22. Gokaltun A, Yarmush ML, Asatekin A et al (2017) Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology. Technology 5(1):1–12. https://doi.org/10.1142/s2339547817300013

23. Schmidt M, Schuler SC, Huttner SS et al (2019) Adult stem cells at work: regenerating skeletal muscle. Cell Mol Life Sci 76(13):2559–2570. https://doi.org/10.1007/s00018-019-03093-6

24. Bersini S, Yazdi IK, Talo G et al (2016) Cell-microenvironment interactions and architectures in microvascular systems. Biotechnol Adv 34(6):1113–1130. https://doi.org/10.1016/j.biotechadv.2016.07.002

25. Chal J, Pourquie O (2017) Making muscle: skeletal myogenesis in vivo and in vitro. Development 144(12):2104–2122. https://doi.org/10.1242/dev.151035

26. Kim JH, Seol YJ, Ko IK et al (2018) 3D bioprinted human skeletal muscle constructs for muscle function restoration. Sci Rep 8(1):12307. https://doi.org/10.1038/s41598-018-29968-5

27. Distler T, Solisito AA, Schneidereit D et al (2020) 3D printed oxidized alginate-gelatin bioink guides C2C12 muscle precursor cell orientation and differentiation via shear stress during bioprinting. Biofabrication 12(4):045005. https://doi.org/10.1088/1758-5090/ab98e4

28. Kaczmarek B, Nadolna K, Owczarek A (2020) The physical and chemical properties of hydrogels based on natural polymers. In: Chen Y (Ed.), Hydrogels Based on Natural Polymers. Elsevier, Amsterdam, p.151–172. https://doi.org/10.1016/B978-0-12-816421-1.00006-9

29. Kolesky DB, Truby RL, Gladman AS et al (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130. https://doi.org/10.1002/adma.201305506

30. Yu J, Wang K, Fan CC et al (2021) An ultrasoft self-fused supramolecular polymer hydrogel for completely preventing postoperative tissue adhesion. Adv Mater 33(16):e2008395. https://doi.org/10.1002/adma.202008395

31. Saroia J, Yanen W, Wei QH et al (2018) A review on biocompatibility nature of hydrogels with 3D printing techniques, tissue engineering application and its future prospective. Bio-Des Manuf 1(4):265–279. https://doi.org/10.1007/s42242-018-0029-7

32. Dietrich M, Heselhaus J, Wozniak J et al (2013) Fibrin-based tissue engineering: comparison of different methods of autologous fibrinogen isolation. Tissue Eng Part C 19(3):216–226. https://doi.org/10.1089/ten.tec.2011.0473

33. Kang DH, Louis F, Liu H et al (2021) Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nat Commun 12(1):5059. https://doi.org/10.1038/s41467-021-25236-9

34. Jain RK, Au P, Tam J et al (2005) Engineering vascularized tissue. Nat Biotechnol 23(7):821–830. https://doi.org/10.1038/nbt0705-821

35. Dejana E, Orsenigo F (2013) Endothelial adherens junctions at a glance. J Cell Sci 126(12):2545–2549. https://doi.org/10.1242/jcs.124529

36. Sidney LE, Branch MJ, Dunphy SE et al (2014) Concise review: evidence for CD34 as a standard marker for diverse progenitors. Stem Cells 32(6):1380–1389. https://doi.org/10.1002/stem.1661

37. Lertkiatmongkol P, Liao DY, Mei H et al (2016) Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr Opin Hematol 23(3):253–259. https://doi.org/10.1097/moh.0000000000000239


关于本刊

Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。


初审迅速:初审快速退稿,不影响作者投其它期刊。

审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。

收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。

文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。


期刊主页:

http://www.springer.com/journal/42242

http://www.jzus.zju.edu.cn/ (国内可下载全文)

在线投稿地址:

http://www.editorialmanager.com/bdmj/default.aspx


入群交流

围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码

生物设计与制造BDM
论文导读、领域资讯
 最新文章