内容简介
本研究论文聚焦用于动态评估心肌细胞膜再愈合的集成电穿孔和纳米多孔传感电极阵列。由于细胞-电极界面松散,传统的平面微电极阵列(MEA)在记录细胞内动作电位方面存在不足。为了高灵敏地研究细胞内电生理信号,使用电穿孔来获得细胞内记录。本研究建立了一种基于纳米多孔电极阵列(NPEA)的生物传感系统,该系统集成了电穿孔和信号采集,可以在很长一段时间内动态地、灵敏地记录心肌细胞的胞内电位。此外,纳米多孔电极可以诱导细胞膜的突出,增强细胞-电极界面耦合,从而促进有效的电穿孔。整个记录过程中的电生理信号可以根据信号变化进行定量分段分析,从而等效地反映电穿孔心肌细胞膜的动态演化。我们认为,本研究提出的低成本、高性能的纳米多孔生物传感平台可以动态记录细胞内动作电位,评估心肌细胞电穿孔,从而为研究心脏病药理学提供新的策略。
引用本文(点击最下方阅读原文可下载PDF)
Sheng W, Li Y, Qin C, et al., 2024. Integrated nanoporous electroporation and sensing electrode array for total dynamic time-domain cardiomyocyte membrane resealing assessment. Bio-des Manuf (Early Access). https://doi.org/10.1007/s42242-024-00308-z
文章导读
图1 基于纳米多孔电极阵列的传感器件用于动态评估心肌细胞膜再愈合的示意图
图2 三维纳米多孔电极阵列的制备过程与表征
图3 通过持续电生理信号记录来动态评估电穿孔心肌细胞膜的再愈合
图4 不同形态电极阵列用于电生理信号记录的比较
图5 不同孔径的三维纳米多孔电极阵列用于电生理信号记录的比较
参考文献
上下滑动以阅览
1. Feigin VL, Forouzanfar MH, Krishnamurthi R et al (2014) Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 383(9913):245–255. https://doi.org/10.1016/S0140-6736(13)61953-4
2. Vos T, Abajobir AA, Abbafati C et al (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390(10100):1211–1259. https://doi.org/10.1016/S0140-6736(17)32154-2
3. Hong J, Kim K, Kim JH et al (2017) The role of endoplasmic reticulum stress in cardiovascular disease and exercise. Int J Vasc Med 2017:2049217. https://doi.org/10.1155/2017/2049217
4. Kontis V, Mathers CD, Rehm J et al (2014) Contribution of six risk factors to achieving the 25×25 non-communicable disease mortality reduction target: a modelling study. Lancet 384(9941):427–437. https://doi.org/10.1016/S0140-6736(14)60616-4
5. Ma LY, Chen WW, Gao RL et al (2020) China cardiovascular diseases report 2018: an updated summary. J Geriatr Cardiol 17(1):1–8. https://doi.org/10.11909/j.issn.1671-5411.2020.01.001
6. Wong ND (2014) Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol 11(5):276–289. https://doi.org/10.1038/nrcardio.2014.26
7. Zhao YL, You SS, Zhang AQ et al (2019) Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nat Nanotechnol 14(8):783–790. https://doi.org/10.1038/s41565-019-0478-y
8. Auer R, Bauer DC, Marques-Vidal P et al (2012) Association of major and minor ECG abnormalities with coronary heart disease events. JAMA 307(14):1497–1505. https://doi.org/10.1001/jama.2012.434
9. Denes P, Larson JC, Lloyd-Jones DM et al (2007) Major and minor ECG abnormalities in asymptomatic women and risk of cardiovascular events and mortality. JAMA 297(9):978–985. https://doi.org/10.1001/jama.297.9.978
10. Hong YJ, Jeong H, Cho KW et al (2019) Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv Funct Mater 29(19):1808247. https://doi.org/10.1002/adfm.201808247
11. Littlejohns TJ, Holliday J, Gibson LM et al (2020) The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat Commun 11(1):2624. https://doi.org/10.1038/s41467-020-15948-9
12. McCorquodale A, Poulton R, Hendry J et al (2017) High prevalence of early repolarization in the paediatric relatives of sudden arrhythmic death syndrome victims and in normal controls. Europace 19(8):1385–1391. https://doi.org/10.1093/europace/euw248
13. Xiang ZH, Han MD, Zhang HX (2023) Nanomaterials based flexible devices for monitoring and treatment of cardiovascular diseases (CVDs). Nano Res 16(3):3939–3955. https://doi.org/10.1007/s12274-022-4551-8
14. Gintant G, Sager PT, Stockbridge N (2016) Evolution of strategies to improve preclinical cardiac safety testing. Nat Rev Drug Discov 15(7):457–471. https://doi.org/10.1038/nrd.2015.34
15. Horvath P, Aulner N, Bickle M et al (2016) Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov 15(11):751–769. https://doi.org/10.1038/nrd.2016.175
16. Itzhaki I, Maizels L, Huber I et al (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471(7337):225–229. https://doi.org/10.1038/nature09747
17. Mummery C, Ward-Van Oostwaard D, Doevendans P et al (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107(21):2733–2740. https://doi.org/10.1161/01.CIR.0000068356.38592.68
18. Ronaldson-Bouchard K, Vunjak-Novakovic G (2018) Organs-on-a-chip: a fast track for engineered human tissues in drug development. Cell Stem Cell 22(3):310–324. https://doi.org/10.1016/j.stem.2018.02.011
19. Shang YX, Chen ZY, Zhang ZH et al (2020) Heart-on-chips screening based on photonic crystals. Bio-Des Manuf 3(3):266–280. https://doi.org/10.1007/s42242-020-00073-9
20. Chen PH, Zhang W, Zhou J et al (2009) Development of planar patch clamp technology and its application in the analysis of cellular electrophysiology. Prog Nat Sci-Mater Int 19:153–160
21. Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442(7101):387–393. https://doi.org/10.1038/nature05061
22. Li XH, Klemic KG, Reed MA et al (2006) Microfluidic system for planar patch clamp electrode arrays. Nano Lett 6:815–819. https://doi.org/10.1021/nl060165r
23. Liu QJ, Wu CS, Cai H et al (2014) Cell-based biosensors and their application in biomedicine. Chem Rev 114(12):6423–6461. https://doi.org/10.1021/cr2003129
24. Li WE, Luo XJ, Ulbricht Y et al (2019) Establishment of an automated patch-clamp platform for electrophysiological and pharmacological evaluation of hiPSC-CMs. Stem Cell Res 41:101662. https://doi.org/10.1016/j.scr.2019.101662
25. Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46(1):455–472. https://doi.org/10.1146/annurev.ph.46.030184.002323
26. Matiukas A, Mitrea BG, Qin MC et al (2007) Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in bloodperfused myocardium. Heart Rhythm 4(11):1441–1451. https://doi.org/10.1016/j.hrthm.2007.07.012
27. Klimas A, Ambrosi CM, Yu JZ et al (2016) OptoDyCE as an automated system for high-throughput all-optical dynamic cardiac electrophysiology. Nat Commun 7(1):11542. https://doi.org/10.1038/ncomms11542
28. Sayresmith NA, Saminathan A, Sailer JK et al (2019) Photostable voltage-sensitive dyes based on simple, solvatofluorochromic, asymmetric thiazolothiazoles. J Am Chem Soc 141(47):18780–18790. https://doi.org/10.1021/jacs.9b08959
29. Hochbaum DR, Zhao YX, Farhi SL et al (2014) All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods 11(8):825–833. https://doi.org/10.1038/nmeth.3000
30. Zhou YC, Liu E, Muller H et al (2021) Optical electrophysiology: toward the goal of label-free voltage imaging. J Am Chem Soc 143(28):10482–10499. https://doi.org/10.1021/jacs.1c02960
31. Xue JJ, Shao M, Gao ZG et al (2023) Advances in micro-nano biosensing platforms for intracellular electrophysiology. J Zhejiang Univ-SCI A (Appl Phys & Eng) 24(11):1017–1026. https://doi.org/10.1631/jzus.A2300267
32. Hofmann B, Katelhon E, Schottdorf M et al (2011) Nanocavity electrode array for recording from electrogenic cells. Lab Chip 11(6):1054–1058. https://doi.org/10.1039/c0lc00582g
33. Abbott J, Ye TY, Ham D et al (2018) Optimizing nanoelectrode arrays for scalable intracellular rlectrophysiology. Acc Chem Res 51(3):600–608. https://doi.org/10.1021/acs.accounts.7b00519
34. Dipalo M, Amin H, Lovato L et al (2017) Intracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes. Nano Lett 17(6):3932–3939. https://doi.org/10.1021/acs.nanolett.7b01523
35. Jahed Z, Yang Y, Tsai CT et al (2022) Nanocrown electrodes for parallel and robust intracellular recording of cardiomyocytes. Nat Commun 13:2253. https://doi.org/10.1038/s41467-022-29726-2
36. Pei F, Tian BZ (2019) Nanoelectronics for minimally invasive cellular recordings. Adv Funct Mater 30(29):1906210. https://doi.org/10.1002/adfm.201906210
37. Spira ME, Hai A (2013) Multi-electrode array technologies for neuroscience and cardiology. Nat Nanotechnol 8(2):83–94. https://doi.org/10.1038/NNANO.2012.265
38. Zhang AQ, Lieber CM (2016) Nano-bioelectronics. Chem Rev 116(1):215–257. https://doi.org/10.1021/acs.chemrev.5b00608
39. Zhou NJ, Ma L (2022) Smart bioelectronics and biomedical devices. Bio-Des Manuf 5(1):1–5. https://doi.org/10.1007/s42242-021-00179-8
40. Dipalo M, Rastogi SK, Matino L et al (2021) Intracellular action potential recordings from cardiomyocytes by ultrafast pulsed laser irradiation of fuzzy graphene microelectrodes. Sci Adv 7(15):eabd5175. https://doi.org/10.1126/SCIADV.ABD5175
41. Kotnik T, Frey W, Sack M et al (2015) Electroporation-based applications in biotechnology. Trend Biotechnol 33(8):480–488. https://doi.org/10.1016/j.tibtech.2015.06.002
42. Kotnik T, Rems L, Tarek M et al (2019) Membrane electroporation and electropermeabilization: mechanisms and models. Annu Rev Biophys 48(1):63–91. https://doi.org/10.1146/annurev-biophys-052118-115451
43. Shokouhi AR, Aslanoglou S, Nisbet D et al (2020) Vertically configured nanostructure-mediated electroporation: a promising route for intracellular regulations and interrogations. Mater Horiz 7(11):2810–2831. https://doi.org/10.1039/d0mh01016b
44. Zhao J, Wen XF, Tian L et al (2019) Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer. Nat Commun 10(1):899. https://doi.org/10.1038/s41467-019-08782-1
45. Chu KF, Dupuy DE (2014) Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer 14(3):199–208. https://doi.org/10.1038/nrc3672
46. Gurtovenko AA, Vattulainen I (2005) Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study. J Am Chem Soc 127(50):17570–17571. https://doi.org/10.1021/ja053129n
47. Kanade PP, Oyunbaatar NE, Shanmugasundaram A et al (2022) MEA-integrated cantilever platform for comparison of real-time change in electrophysiology and contractility of cardiomyocytes to drugs. Biosens Bioelectron 216:114675. https://doi.org/10.1016/j.bios.2022.114675
48. Kim V, Semenov I, Kiester AS et al (2023) Action spectra and mechanisms of (in) efficiency of bipolar electric pulses at electroporation. Bioelectrochemistry 149:108319. https://doi.org/10.1016/j.bioelechem.2022.108319
49. Stewart MP, Langer R, Jensen KF (2018) Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem Rev 118(16):7409–7531. https://doi.org/10.1021/acs.chemrev.7b00678
50. Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88(6):4045–4053. https://doi.org/10.1529/biophysj.104.050617
51. Yang Y, Liu AF, Tsai CT et al (2022) Cardiotoxicity drug screening based on whole-panel intracellular recording. Biosens Bioelectron 216:114617. https://doi.org/10.1016/j.bios.2022.114617
52. Chen HW, Zhang Y, Zhang LW et al (2021) Applications of bioinspired approaches and challenges in medical devices. Bio-Des Manuf 4(1):146–148. https://doi.org/10.1007/s42242-020-00103-6
53. Wu GH, Wu JG, Li ZH et al (2022) Development of digital organ-on-a-chip to assess hepatotoxicity and extracellular vesicle-based anti-liver cancer immunotherapy. Bio-Des Manuf 5(3):437–450. https://doi.org/10.1007/s42242-022-00188-1
54. Zhang YS, Khademhosseini A (2020) Engineering in vitro human tissue models through bio-design and manufacturing. Bio-Des Manuf 3(3):155–159. https://doi.org/10.1007/s42242-020-00080-w
55. Zhang MY, Xu DX, Fang JR et al (2022) A dynamic and quantitative biosensing assessment for electroporated membrane evolution of cardiomyocytes. Biosens Bioelectron 202:114016. https://doi.org/10.1016/j.bios.2022.114016
56. Xu DX, Xiao HB, Wang SZ et al (2022) Universal and sensitive drug assessment biosensing platform using optimal mechanical beating detection of single cardiomyocyte. ACS Nano 16(9):15484–15494. https://doi.org/10.1021/acsnano.2c08049
57. Lin ZC, Xie C, Osakada Y et al (2014) Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat Commun 5:3206. https://doi.org/10.1038/ncomms4206
58. Karatekin E, Sandre O, Guitouni H et al (2003) Cascades of transient pores in giant vesicles: line tension and transport. Biophys J 84(3):1734–1749. https://doi.org/10.1016/S0006-3495(03)74981-9
59. McNeil PL, Kirchhausen T (2005) An emergency response team for membrane repair. Nat Rev Mol Cell Biol 6(6):499–505. https://doi.org/10.1038/nrm1665
60. Steinhardt RA, Bi G, Alderton JM (1994) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263(5154):390–393. https://doi.org/10.1126/science.7904084
61. Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16(1):521–555. https://doi.org/10.1146/annurev.cellbio.16.1.521
62. Lira RB, Leomil FSC, Melo RJ et al (2021) To cose or to collapse: the role of charges on membrane stability upon pore formation. Adv Sci 8(11):2004068. https://doi.org/10.1002/advs.202004068
63. Elnathan R, Barbato MG, Guo XF et al (2022) Biointerface design for vertical nanoprobes. Nat Rev Mater 7(12):953–973. https://doi.org/10.1038/s41578-022-00464-7
关于本刊
Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。
初审迅速:初审快速退稿,不影响作者投其它期刊。
审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。
收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。
文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。
期刊主页:
http://www.springer.com/journal/42242
http://www.jzus.zju.edu.cn/ (国内可下载全文)
在线投稿地址:
http://www.editorialmanager.com/bdmj/default.aspx
入群交流
围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码