上海大学刘媛媛教授等 | 细胞球构建策略及其在生物3D打印中的应用

文摘   科学   2024-10-16 18:22   浙江  

内容简介


本综述论文聚焦于细胞球制造及细胞球生物3D打印的最新发展趋势和相关研究进展。细胞是构建组织的基本单元。与传统二维培养细胞相比,细胞球是三维(3D)结构,可以自然地形成复杂的细胞-细胞和细胞-基质相互作用。这种结构更接近于生物体内细胞的自然环境。细胞球除了应用于疾病建模和药物筛选外,在组织再生方面也拥有巨大潜力。3D生物打印是一种先进的生物制造方法。它可以准确地将生物墨水沉积到预先设计的三维形状中,以创建复杂的生物组织。生物打印虽然是一种高效的手段,但要使细胞最终形成到复杂组织结构所需的时间较长。细胞球3D打印通过打印高细胞密度的细胞球,在后期培养时大幅缩短发育成大组织/器官的时间。将球体制造与生物打印技术结合,有望为再生医学领域的一系列难题提供全新解决路径。文章在介绍细胞球作为构建块的基础上,系统阐述和分析细胞球制造方法和细胞球3D生物打印的策略。


引用本文(点击最下方阅读原文可下载PDF)

Lu C, Gao C, Qiao H, et al., 2024. Spheroid construction strategies and application in 3D bioprinting. Bio-des Manuf 7(5):800–818. https://doi.org/10.1007/s42242-024-00273-7

文章导读



图1 细胞球制造与3D打印应用


图2 细胞球各类制造方法及应用


图3 挤出打印细胞球的应用


图4 生物组装细胞球的应用


图5 磁控细胞球的应用

参考文献

上下滑动以阅览

1. Lin RZ, Chang HY (2008) Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 3(9–10):1172–1184. https://doi.org/10.1002/biot.200700228

2. Laschke MW, Menger MD (2017) Life is 3D: boosting spheroid function for tissue engineering. Trends Biotechnol 35(2):133–144. https://doi.org/10.1016/j.tibtech.2016.08.004

3. Jensen C, Teng Y (2020) Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci 7:33. https://doi.org/10.3389/fmolb.2020.00033

4. Costa EC, Moreira AF, de Melo-Diogo D et al (2016) 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol Adv 34(8):1427–1441. https://doi.org/10.1016/j.biotechadv.2016.11.002

5. Fennema E, Rivron N, Rouwkema J et al (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31(2):108–115. https://doi.org/10.1016/j.tibtech.2012.12.003

6. Weiswald LB, Bellet D, Dangles-Marie V (2015) Spherical cancer models in tumor biology. Neoplasia 17(1):1–15. https://doi.org/10.1016/j.neo.2014.12.004

7. Li M, Song XE, Jin S et al (2021) 3D tumor model biofabrication. Bio-Des Manuf 4(3):526–540. https://doi.org/10.1007/s42242-021-00134-7

8. Langhans SA (2018) Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol 9:6. https://doi.org/10.3389/fphar.2018.00006

9. Breslin S, O’Driscoll L (2013) Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 18(5–6):240–249. https://doi.org/10.1016/j.drudis.2012.10.003

10. Kunz-Schughart LA, Freyer JP, Hofstaedter F et al (2004) The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. SLAS Discov 9(4):273–285. https://doi.org/10.1177/1087057104265040

11. Mironov V, Visconti RP, Kasyanov V et al (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30(12):2164–2174. https://doi.org/10.1016/j.biomaterials.2008.12.084

12. Hospodiuk M, Dey M, Sosnoski D et al (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35(2):217–239. https://doi.org/10.1016/j.biotechadv.2016.12.006

13. Katt ME, Placone AL, Wong AD et al (2016) In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol 4:12. https://doi.org/10.3389/fbioe.2016.00012

14. Hoarau-Véchot J, Rafii A, Touboul C et al (2018) Halfway between 2D and animal models: are 3D cultures the ideal tool to study cancer-microenvironment interactions? Int J Mol Sci 19(1):181. https://doi.org/10.3390/ijms19010181

15. Hirschhaeuser F, Menne H, Dittfeld C et al (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148(1):3–15. https://doi.org/10.1016/j.jbiotec.2010.01.012

16. Barbosa MAG, Xavier CPR, Pereira RF et al (2022) 3D cell culture models as recapitulators of the tumor microenvironment for the screening of anti-cancer drugs. Cancers 14(1):190. https://doi.org/10.3390/cancers14010190

17. Zhou ZZ, He JY, Pang Y et al (2023) Reconstruction of tumor microenvironment via in vitro three-dimensional models. Biofabrication 15(3):032002. https://doi.org/10.1088/1758-5090/acd1b8

18. Liu J, Sun L, Xu W et al (2019) Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydr Polym 207:297–316. https://doi.org/10.1016/j.carbpol.2018.11.077

19. Yan Q, Dong H, Su J et al (2018) A review of 3D printing technology for medical applications. Engineering 4(5):729–742. https://doi.org/10.1016/j.eng.2018.07.021

20. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785. https://doi.org/10.1038/nbt.2958

21. Ng WL, Chua CK, Shen YF (2019) Print me an organ! Why we are not there yet. Prog Polym Sci 97:101145. https://doi.org/10.1016/j.progpolymsci.2019.101145

22. Gao C, Lu CX, Jian ZA et al (2021) 3D bioprinting for fabricating artificial skin tissue. Colloid Surf B Biointerfaces 208:112041. https://doi.org/10.1016/j.colsurfb.2021.112041

23. Wang Z, Kapadia W, Li CD et al (2021) Tissue-specific engineering: 3D bioprinting in regenerative medicine. J Contr Rel 329:237–256. https://doi.org/10.1016/j.jconrel.2020.11.044

24. Mandrycky C, Wang ZJ, Kim K et al (2018) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434. https://doi.org/10.1016/j.biotechadv.2015.12.011

25. Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343. https://doi.org/10.1016/j.biomaterials.2015.10.076

26. Hölzl K, Lin SM, Tytgat L et al (2016) Ovsianikov, bioink properties before, during and after 3D bioprinting. Biofabrication 8(3):032002. https://doi.org/10.1088/1758-5090/8/3/032002

27. Zhang Y, Wang B, Hu JC et al (2021) 3D composite bioprinting for fabrication of artificial biological tissues. Int J Bioprint 7(1):299. https://doi.org/10.18063/ijb.v7i1.299

28. Atala A, Kasper FK, Mikos AG (2012) Engineering complex tissues. Sci Transl Med 4(160):160rv12. https://doi.org/10.1126/scitranslmed.3004890

29. Tamayol A, Akbari M, Annabi N et al (2013) Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol Adv 31(5):669–687. https://doi.org/10.1016/j.biotechadv.2012.11.007

30. Zhou J, Tian Z, Tian QY et al (2021) 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering. Bioact Mater 6(6):1711–1726. https://doi.org/10.1016/j.bioactmat.2020.11.027

31. Weng T, Zhang W, Xia Y et al (2021) 3D bioprinting for skin tissue engineering: current status and perspectives. J Tissue Eng 12:20417314211028576. https://doi.org/10.1177/20417314211028574

32. Hollister SJ, Maddox RD, Taboas JM (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23(20):4095–4103. https://doi.org/10.1016/S0142-9612(02)00148-5

33. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502. https://doi.org/10.1089/ten.teb.2012.0437

34. Lee JM, Yeong WY (2016) Design and printing strategies in 3D bioprinting of cell-hydrogels: a review. Adv Healthc Mater 5(22):2856–2865. https://doi.org/10.1002/adhm.201600435

35. Bendtsen ST, Quinnell SP, Wei M (2017) Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J Biomed Mater Res A 105(5):1457–1468. https://doi.org/10.1002/jbm.a.36036

36. Ying GL, Jiang N, Maharjan S et al (2018) Aqueous two-phase emulsion bioink-enabled 3D bioprinting of porous hydrogels. Adv Mater 30(50):1805460. https://doi.org/10.1002/adma.201805460

37. Hutmacher DW, Schantz JT, Lam CXF et al (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1(4):245–260. https://doi.org/10.1002/term.24

38. Shuai CJ, Yang WJ, Feng P et al (2021) Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity. Bioact Mater 6(2):490–502. https://doi.org/10.1016/j.bioactmat.2020.09.001

39. Yin S, Zhang WJ, Zhang ZY et al (2019) Recent advances in scaffold design and material for vascularized tissue-engineered bone regeneration. Adv Healthc Mater 8(10):1801433. https://doi.org/10.1002/adhm.201801433

40. Gao C, Lu CX, Qiao H et al (2022) Strategies for vascularized skin models in vitro. Biomater Sci 10(17):4724–4739. https://doi.org/10.1039/D2BM00784C

41. Sekine H, Shimizu T, Sakaguchi K et al (2013) In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun 4(1):1399. https://doi.org/10.1038/ncomms2406

42. Guo BL, Ma PX (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem 57(4):490–500. https://doi.org/10.1007/s11426-014-5086-y

43. Bresciani G, Hofland LJ, Dogan F et al (2019) Evaluation of spheroid 3D culture methods to study a pancreatic neuroendocrine neoplasm cell line. Front Endocrinol 10:682. https://doi.org/10.3389/fendo.2019.00682

44. Decarli MC, Amaral R, Santos DPD et al (2021) Cell spheroids as a versatile research platform: formation mechanisms, high throughput production, characterization and applications. Biofabrication 13(3):32002. https://doi.org/10.1088/1758-5090/abe6f2

45. Shao CM, Chi JJ, Zhang H et al (2020) Development of cell spheroids by advanced technologies. Adv Mater Technol 5(9):2000183. https://doi.org/10.1002/admt.202000183

46. Liu D, Chen SX, Naing MW (2021) A review of manufacturing capabilities of cell spheroid generation technologies and future development. Biotechnol Bioeng 118(2):542–554. https://doi.org/10.1002/bit.27620

47. Ward JP, King JR (2003) Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures. Math Biosci 181(2):177–207. https://doi.org/10.1016/S0025-5564(02)00148-7

48. Lin B, Miao Y, Wang J et al (2016) Surface tension guided hanging-drop: producing controllable 3D spheroid of high-passaged human dermal papilla cells and forming inductive microtissues for hair-follicle regeneration. ACS Appl Mater Interfaces 8(9):5906–5916. https://doi.org/10.1021/acsami.6b00202

49. Damman R, Lucini Paioni A, Xenaki KT et al (2020) Development of in vitro-grown spheroids as a 3D tumor model system for solid-state NMR spectroscopy. J Biomol NMR 74(8–9):401–412. https://doi.org/10.1007/s10858-020-00328-8

50. Tung YC, Hsiao AY, Allen SG et al (2011) High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136(3):473–478. https://doi.org/10.1039/C0AN00609B

51. Hsiao AY, Tung YC, Kuo CH et al (2012) Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates. Biomed Microdevices 14(2):313–323. https://doi.org/10.1007/s10544-011-9608-5

52. Frey O, Misun PM, Fluri DA et al (2014) Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat Commun 5(1):4250. https://doi.org/10.1038/ncomms5250

53. Hookway TA, Butts JC, Lee E et al (2016) Aggregate formation and suspension culture of human pluripotent stem cells and differentiated progeny. Methods 101:11–20. https://doi.org/10.1016/j.ymeth.2015.11.027

54. Shin HS, Kook YM, Hong HJ et al (2016) Functional spheroid organization of human salivary gland cells cultured on hydrogel-micropatterned nanofibrous microwells. Acta Biomater 45:121–132. https://doi.org/10.1016/j.actbio.2016.08.058

55. Takagi M, Yamada M, Utoh R et al (2023) A multiscale, vertical-flow perfusion system with integrated porous microchambers for upgrading multicellular spheroid culture. Lab Chip 23(9):2257–2267. https://doi.org/10.1039/D3LC00168G

56. Lei X, Shao CM, Shou X et al (2021) Porous hydrogel arrays for hepatoma cell spheroid formation and drug resistance investigation. Bio-Des Manuf 4(4):842–850. https://doi.org/10.1007/s42242-021-00141-8

57. Gonzalez-Fernandez T, Tenorio AJ, Leach JK (2020) Three-dimensional printed stamps for the fabrication of patterned microwells and high-throughput production of homogeneous cell spheroids. 3D Print Addit Manuf 7(3):139–147. https://doi.org/10.1089/3dp.2019.0129

58. Fukuda J, Khademhosseini A, Yeo Y et al (2006) Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials 27(30):5259–5267. https://doi.org/10.1016/j.biomaterials.2006.05.044

59. Tu TY, Wang Z, Bai J et al (2014) Rapid prototyping of concave microwells for the formation of 3D, multicellular cancer aggregates for drug screening. Adv Healthc Mater 3(4):609–616. https://doi.org/10.1002/adhm.201300151

60. Lee K, Kim C, Yang JY et al (2012) Gravity-oriented microfluidic device for uniform and massive cell spheroid formation. Biomicrofluidics 6(1):014114. https://doi.org/10.1063/1.3687409

61. Marimuthu M, Rousset N, St-Georges-Robillard A et al (2018) Multi-size spheroid formation using microfluidic funnels. Lab Chip 18(2):304–314. https://doi.org/10.1039/C7LC00970d

62. Sabhachandani P, Motwani V, Cohen N et al (2016) Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Lab Chip 16(3):497–505. https://doi.org/10.1039/C5LC01139F

63. Chen YC, Lou X, Zhang ZX et al (2015) High-throughput cancer cell sphere formation for characterizing the efficacy of photo dynamic therapy in 3D cell cultures. Sci Rep 5(1):12175. https://doi.org/10.1038/srep12175

64. Mattix BM, Olsen TR, Casco M et al (2014) Janus magnetic cellular spheroids for vascular tissue engineering. Biomaterials 35(3):949–960. https://doi.org/10.1016/j.biomaterials.2013.10.036

65. Seo JY, Park SB, Kim SY et al (2023) Acoustic and magnetic stimuli-based three-dimensional cell culture platform for tissue engineering. Tissue Eng Regen Med 20(4):563–580. https://doi.org/10.1007/s13770-023-00539-8

66. Kim JA, Choi JH, Kim M et al (2013) High-throughput generation of spheroids using magnetic nanoparticles for three-dimensional cell culture. Biomaterials 34(34):8555–8563. https://doi.org/10.1016/j.biomaterials.2013.07.056

67. Jafari J, Han XL, Palmer J et al (2019) Remote control in formation of 3D multicellular assemblies using magnetic forces. ACS Biomater Sci Eng 5(5):2532–2542. https://doi.org/10.1021/acsbiomaterials.9b00297

68. Zhang JB, Xu YT, Zhuo CY et al (2023) Highly efficient fabrication of functional hepatocyte spheroids by a magnetic system for the rescue of acute liver failure. Biomaterials 294:122014. https://doi.org/10.1016/j.biomaterials.2023.122014

69. Phelan MA, Gianforcaro AL, Gerstenhaber JA et al (2019) An air bubble-isolating rotating wall vessel bioreactor for improved spheroid/organoid formation. Tissue Eng Part C Methods 25(8):479–488. https://doi.org/10.1089/ten.tec.2019.0088

70. Santo VE, Estrada MF, Rebelo SP et al (2016) Adaptable stirred-tank culture strategies for large scale production of multicellular spheroid-based tumor cell models. J Biotechnol 221:118–129. https://doi.org/10.1016/j.jbiotec.2016.01.031

71. Cha HM, Kim SM, Choi YS et al (2015) Scaffold-free three-dimensional culture systems for mass production of periosteum-derived progenitor cells. J Biosci Bioeng 120(2):218–222. https://doi.org/10.1016/j.jbiosc.2014.12.019

72. Strube F, Infanger M, Wehland M et al (2019) Alteration of cytoskeleton morphology and gene expression in human breast cancer cells under dimulated microgravity. Cell J 22(1):106–114. https://doi.org/10.22074/cellj.2020.6537

73. Gallegos-Martínez S, Lara-Mayorga IM, Samandari M et al (2022) Culture of cancer spheroids and evaluation of anti-cancer drugs in 3D-printed miniaturized continuous stirred tank reactors (mCSTRs). Biofabrication 14(3):035007. https://doi.org/10.1088/1758-5090/ac61a4

74. Rocha T, Teixeira AM, Gomes SG et al (2023) A 3D printed hydrogel to promote human keratinocytes’ spheroid-based growth. J Biomed Mater Res B Appl Biomater 111(5):1089–1099. https://doi.org/10.1002/jbm.b.35216

75. Ling K, Huang GY, Liu JC et al (2015) Bioprinting-based high-throughput fabrication of three-fimensional MCF-7 human breast cancer cellular spheroids. Engineering 1(2):269–274. https://doi.org/10.15302/J-ENG-2015062

76. Faulkner-Jones A, Greenhough SA, King J et al (2013) Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication 5(1):015013. https://doi.org/10.1088/1758-5082/5/1/015013

77. Fu JJ, Lv XH, Wang LX et al (2021) Cutting and bonding Parafilm® to fast prototyping flexible hanging drop chips for 3D spheroid cultures. Cell Mol Bioeng 14(2):187–199. https://doi.org/10.1007/s12195-020-00660-x

78. Sun BY, Zhao Y, Wu WM et al (2021) A superhydrophobic chip integrated with an array of medium reservoirs for long-term hanging drop spheroid culture. Acta Biomater 135:234–242. https://doi.org/10.1016/j.actbio.2021.08.006

79. Tang T, Zhang PP, Wei YR et al (2023) High-efficiency 3D cell spheroid formation via the inertial focusing effect in rotating droplets. Bio-Des Manuf 6(1):90–97. https://doi.org/10.1007/s42242-022-00211-5

80. Wang YL, Zhao L, Tian C et al (2015) Geometrically controlled preparation of various cell aggregates by droplet-based microfluidics. Anal Methods 7(23):10040–10051. https://doi.org/10.1039/C5AY02466H

81. Costa EC, de Melo-Diogo D, Moreira AF et al (2018) Spheroids formation on non-adhesive surfaces by liquid overlay technique: considerations and practical approaches. Biotechnol J 13(1):1700417. https://doi.org/10.1002/biot.201700417

82. Santos JM, Camões SP, Filipe E et al (2015) Three-dimensional spheroid cell culture of umbilical cord tissue-derived mesenchymal stromal cells leads to enhanced paracrine induction of wound healing. Stem Cell Res Ther 6(1):90. https://doi.org/10.1186/s13287-015-0082-5

83. Utama RH, Atapattu L, O’Mahony AP et al (2020) A 3D bioprinter specifically designed for the high-throughput production of matrix-embedded multicellular spheroids. iScience 23(10):101621. https://doi.org/10.1016/j.isci.2020.101621

84. Dey M, Ozbolat IT (2020) 3D bioprinting of cells, tissues and organs. Sci Rep 10(1):14023. https://doi.org/10.1038/s41598-020-70086-y

85. Sun W, Starly B, Daly AC et al (2020) The bioprinting roadmap. Biofabrication 12(2):022002. https://doi.org/10.1088/1758-5090/ab5158

86. Banerjee D, Singh YP, Datta P et al (2022) Strategies for 3D bioprinting of spheroids: a comprehensive review. Biomaterials 291:121881. https://doi.org/10.1016/j.biomaterials.2022.121881

87. Gao GF, Huang Y, Schilling AF et al (2018) Organ bioprinting: are we there yet? Adv Healthc Mater 1:1701018. https://doi.org/10.1002/adhm.201701018

88. Arai K, Murata D, Verissimo AR et al (2018) Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer. PLoS ONE 13(12):e0209162. https://doi.org/10.1371/journal.pone.0209162

89. Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60(3):691–699. https://doi.org/10.1109/TBME.2013.2243912

90. Ozbolat IT (2015) Scaffold-based or scaffold-free bioprinting: competing or complementing approaches? J Nanotechnol Eng Med 6(2):024701. https://doi.org/10.1115/1.4030414

91. Jakab K, Norotte C, Damon B et al (2008) Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng Part A 14(3):413–421. https://doi.org/10.1089/tea.2007.0173

92. Jakab K, Neagu A, Mironov V et al (2004) Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc Natl Acad Sci USA 101(9):2864–2869. https://doi.org/10.1073/pnas.0400164101

93. Mekhileri NV, Lim KS, Brown GCJ et al (2018) Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Biofabrication 10(2):024103. https://doi.org/10.1088/1758-5090/aa9ef1

94. Gutzweiler L, Kartmann S, Troendle K et al (2017) Large scale production and controlled deposition of single HUVEC spheroids for bioprinting applications. Biofabrication 9(2):025027. https://doi.org/10.1088/1758-5090/aa7218

95. Langer K, Joensson HN (2020) Rapid production and recovery of cell spheroids by automated froplet, microfluidics. SLAS Technol 25(2):111–122. https://doi.org/10.1177/2472630319877376

96. Murata D, Arai K, Nakayama K (2020) Scaffold-free bio-3D printing using spheroids as “bio-inks” for tissue (re-)construction and drug response tests. Adv Healthc Mater 9(15):e1901831. https://doi.org/10.1002/adhm.201901831

97. Nakamura A, Murata D, Fujimoto R et al (2021) Bio-3D printing iPSC-derived human chondrocytes for articular cartilage regeneration. Biofabrication 13(4):044103. https://doi.org/10.1088/1758-5090/ac1c99

98. LaBarge W, Morales A, Pretorius D et al (2019) Scaffold-free bioprinter utilizing layer-by-layer printing of cellular spheroids. Micromachines 10(9):570. https://doi.org/10.3390/mi10090570

99. Ip BC, Cui F, Wilks BT et al (2018) Perfused organ cell-dense macrotissues assembled from prefabricated living microtissues. Adv Biosyst 2(8):1800076. https://doi.org/10.1002/adbi.201800076

100. Ayan B, Heo DN, Zhang ZF et al (2020) Aspiration-assisted bioprinting for precise positioning of biologics. Sci Adv 6(10):eaaw5111. https://doi.org/10.1126/sciadv.aaw5111

101. Tseng H, Gage JA, Shen T et al (2015) A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging. Sci Rep 5(1):13987. https://doi.org/10.1038/srep13987

102. Olsen TR, Mattix B, Casco M et al (2015) Manipulation of cellular spheroid composition and the effects on vascular tissue fusion. Acta Biomater 13:188–198. https://doi.org/10.1016/j.actbio.2014.11.024

103. Matai I, Kaur G, Seyedsalehi A et al (2020) Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226:119536. https://doi.org/10.1016/j.biomaterials.2019.119536

104. Ning LQ, Chen XB (2017) A brief review of extrusion-based tissue scaffold bio-printing. Biotechnol J 12(8):1600671. https://doi.org/10.1002/biot.201600671

105. Pati F, Jang J, Ha DH et al (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5(1):3935. https://doi.org/10.1038/ncomms4935

106. Byambaa B, Annabi N, Yue K et al (2017) Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv Healthc Mater 6(16):1700015. https://doi.org/10.1002/adhm.201700015

107. Li XR, Deng QF, Zhuang TT et al (2020) 3D bioprinted breast tumor model for structure–activity relationship study. Bio-Des Manuf 3(4):361–372. https://doi.org/10.1007/s42242-020-00085-5

108. Bulanova EA, Koudan EV, Degosserie J et al (2017) Bioprinting of a functional vascularized mouse thyroid gland construct. Biofabrication 9(3):034105. https://doi.org/10.1088/1758-5090/aa7fdd

109. Xu CX, Chai WX, Huang Y et al (2012) Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol Bioeng 109(12):3152–3160. https://doi.org/10.1002/bit.24591

110. Xu T, Jin J, Gregory C et al (2005) Inkjet printing of viable mammalian cells. Biomaterials 26(1):93–99. https://doi.org/10.1016/j.biomaterials.2004.04.011

111. Demirci U, Montesano G (2007) Single cell epitaxy by acoustic picolitre droplets. Lab Chip 7(9):1139–1145. https://doi.org/10.1039/B704965J

112. Fang Y, Frampton JP, Raghavan S et al (2012) Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning. Tissue Eng Part C Methods 18(9):647–657. https://doi.org/10.1089/ten.tec.2011.0709

113. Xu F, Celli J, Rizvi I et al (2011) A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J 6(2):204–212. https://doi.org/10.1002/biot.201000340

114. Lee W, Debasitis JC, Lee VK et al (2009) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30(8):1587–1595. https://doi.org/10.1016/j.biomaterials.2008.12.009

115. Xu T, Zhao WX, Zhu JM et al (2013) Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34(1):130–139. https://doi.org/10.1016/j.biomaterials.2012.09.035

116. Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42. https://doi.org/10.1016/j.biomaterials.2016.06.012

117. Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23(24):H178–H183. https://doi.org/10.1002/adma.201004625

118. Moldovan NI, Hibino N, Nakayama K (2017) Principles of the Kenzan method for robotic cell spheroid-based three-dimensional bioprinting. Tissue Eng Part B Rev 23(3):237–244. https://doi.org/10.1089/ten.teb.2016.0322

119. Imamura T, Shimamura M, Ogawa T et al (2018) Biofabricated structures reconstruct functional urinary bladders in radiation-injured rat bladders. Tissue Eng Part A 24(21–22):1574–1587. https://doi.org/10.1089/ten.tea.2017.0533

120. Itoh M, Nakayama K, Noguchi R et al (2015) Scaffold-free tubular tissues created by a Bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLoS ONE 10(9):e0136681. https://doi.org/10.1371/journal.pone.0136681

121. Yurie H, Ikeguchi R, Aoyama T et al (2017) The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model. PLoS ONE 12(2):e0171448. https://doi.org/10.1371/journal.pone.0171448

122. Taniguchi D, Matsumoto K, Tsuchiya T et al (2018) Scaffold-free trachea regeneration by tissue engineering with bio-3D printing. Interact CardioVasc Thorac Surg 26(5):745–752. https://doi.org/10.1093/icvts/ivx444

123. Takeoka Y, Matsumoto K, Taniguchi D et al (2019) Regeneration of esophagus using a scaffold-free biomimetic structure created with bio-three-dimensional printing. PLoS ONE 14(3):e0211339. https://doi.org/10.1371/journal.pone.0211339

124. Ong CS, Fukunishi T, Zhang HT et al (2017) Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Sci Rep 7(1):4566. https://doi.org/10.1038/s41598-017-05018-4

125. Yanagi Y, Nakayama K, Taguchi T et al (2017) In vivo and ex vivo methods of growing a liver bud through tissue connection. Sci Rep 7(1):14085. https://doi.org/10.1038/s41598-017-14542-2

126. Zhang XY, Yanagi Y, Sheng ZJ et al (2018) Regeneration of diaphragm with bio-3D cellular patch. Biomaterials 167:1–14. https://doi.org/10.1016/j.biomaterials.2018.03.012

127. Aoun L, Laborde A, Vieu C (2015) Shaping living tissues using microfabricated structures. Microelectron Eng 144:1–5. https://doi.org/10.1016/j.mee.2014.12.014

128. Tejavibulya N, Youssef J, Bao B et al (2011) Directed self-assembly of large scaffold-free multi-cellular honeycomb structures. Biofabrication 3(3):034110. https://doi.org/10.1088/1758-5082/3/3/034110

129. Yu Y, Moncal KK, Li JQ et al (2016) Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci Rep 6(1):28714. https://doi.org/10.1038/srep28714

130. Livoti CM, Morgan JR (2010) Self-assembly and tissue fusion of toroid-shaped minimal building units. Tissue Eng Part A 16(6):2051–2061. https://doi.org/10.1089/ten.tea.2009.0607

131. Blakely AM, Manning KL, Tripathi A et al (2015) Bio-pick, place, and perfuse: a new instrument for three-dimensional tissue engineering. Tissue Eng Part C Methods 21(7):737–746. https://doi.org/10.1089/ten.tec.2014.0439

132. Ip BC, Cui F, Tripathi A et al (2016) The bio-gripper: a fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing. Biofabrication 8(2):025015. https://doi.org/10.1088/1758-5090/8/2/025015

133. Heo DN, Ayan B, Dey M et al (2021) Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering. Biofabrication 13(1):15013. https://doi.org/10.1088/1758-5090/abc1bf

134. Ayan B, Wu Y, Karuppagounder V et al (2020) Aspiration-assisted bioprinting of the osteochondral interface. Sci Rep 10(1):13148. https://doi.org/10.1038/s41598-020-69960-6

135. Daly AC, Davidson MD, Burdick JA (2021) 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat Commun 12(1):753. https://doi.org/10.1038/s41467-021-21029-2

136. Haisler WL, Timm DM, Gage JA et al (2013) Three-dimensional cell culturing by magnetic levitation. Nat Protoc 8(10):1940–1949. https://doi.org/10.1038/nprot.2013.125

137. Caleffi JT, Aal MCE, Gallindo HOM et al (2021) Magnetic 3D cell culture: state of the art and current advances. Life Sci 286:120028. https://doi.org/10.1016/j.lfs.2021.120028

138. Mattix B, Olsen TR, Gu Y et al (2014) Biological magnetic cellular spheroids as building blocks for tissue engineering. Acta Biomater 10(2):623–629. https://doi.org/10.1016/j.actbio.2013.10.021

139. Wang Z, Yang PF, Xu HY et al (2009) Inhibitory effects of a gradient static magnetic field on normal angiogenesis. Bioelectromagnetics 30(6):446–453. https://doi.org/10.1002/bem.20501

140. Gong X, Lin C, Cheng J et al (2015) Generation of multicellular tumor spheroids with microwell-based agarose scaffolds for drug testing. PLoS ONE 10(6):e0130348. https://doi.org/10.1371/journal.pone.0130348

141. Laschke MW, Harder Y, Amon M et al (2006) Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng 12(8):2093–2104. https://doi.org/10.1089/ten.2006.12.2093

142. Laschke MW, Menger MD (2017) Spheroids as vascularization units: from angiogenesis research to tissue engineering applications. Biotechnol Adv 35(6):782–791. https://doi.org/10.1016/j.biotechadv.2017.07.002


关于本刊

Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,2023年公布的最新影响因子为7.9,位列JCR的Q1区,14/96,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区。


初审迅速:初审快速退稿,不影响作者投其它期刊。

审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。

收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。

文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。


期刊主页:

http://www.springer.com/journal/42242

http://www.jzus.zju.edu.cn/ (国内可下载全文)

在线投稿地址:

http://www.editorialmanager.com/bdmj/default.aspx


入群交流

围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码

生物设计与制造BDM
论文导读、领域资讯
 最新文章