内容简介
本研究论文聚焦一种用于工程化生物组织构建的含氧胶体生物墨水。确保充足的氧气供应对于生物打印应用的成功至关重要,因为它促进了组织融合和自然再生。为保证目标细胞的存活,需要在3D打印结构中产生不同组织的氧气浓度变化,并精确再现特定组织的氧气水平。尽管释放氧气的生物材料(如释氧微粒)表现出增强受伤组织微环境氧气供应的前景,但这种方法是否可扩展到大尺寸组织,以及不同释氧微粒浓度的组织特异性生物墨水是否可以用于3D打印仍然未知。本研究通过引入一类创新的含氧生物墨水,将胶体基微凝胶与释氧微粒相结合,来填补这一关键空白。本研究将纳米级过氧化钙(nCaO2)和氧化锰纳米片(nMnO2)引入疏水性聚合物微粒中,使氧气释放得以精确调节,同时控制过氧化氢的释放。此外,利用水相两相体系可实现含氧和细胞相容性胶体凝胶的制备。本研究全面评估了所得到的生物墨水的基本特性,包括其流变行为、可打印性、形状保真度、力学性能和氧气释放特性。此外,本研究通过细胞负载氧化胶体生物墨水制备的印刷构建物展示了宏观可扩展性和细胞相容性。通过展示基于挤出的生物打印的效果,本研究强调了它可用于制造仿生组织的能力,表明它在新应用领域的潜力。这些研究成果通过实现高细胞存活率和能够模拟特定供氧组织的可扩展性,推动了生物打印领域的发展。因此,这项工作为增强生理相关性的功能组织的发展提供了一条有希望的途径。
引用本文(点击最下方阅读原文可下载PDF)
Jeong SH, Hiemstra J, Blokzijl PV, et al., 2024. An oxygenating colloidal bioink for the engineering of biomimetic tissue constructs. Bio-des Manuf 7(3):240–261. https://doi.org/10.1007/s42242-024-00281-7
文章导读
图1 图解了胶体凝胶、释氧微粒和生成氧气的胶体生物墨水的制备过程以及它们在组织构建制备中的潜在应用
图2 不同GelMA:明胶比例下混合胶凝胶的特性鉴定
图3 释氧微粒(包括nCaO2和nMnO2纳米颗粒)的特征
图4 释氧微粒(OMP)载体胶体生物墨水的表面形态及OMP-Gels的后交联水解稳定性、酶稳定性和氧释放行为的表征
图5 OMP的细胞毒性和载细胞OMP-Gel打印结构的细胞存活率
参考文献
上下滑动以阅览
1. Zhang YS, Yue K, Aleman J et al (2017) 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng 45(1):148–163. https://doi.org/10.1007/s10439-016-1612-8
2. Heinrich MA, Liu WJ, Jimenez A et al (2019) 3D bioprinting: from benches to translational applications. Small 15(23):1805510. https://doi.org/10.1002/smll.201805510
3. Cui X, Li J, Hartanto Y et al (2020) Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel-based bioinks. Adv Healthc Mater 9(15):e1901648. https://doi.org/10.1002/adhm.201901648
4. Liu WJ, Zhang YS, Heinrich MA et al (2017) Rapid continuous multimaterial extrusion bioprinting. Adv Mater 29(3):1604630. https://doi.org/10.1002/adma.201770016
5. Levato R, Jungst T, Scheuring RG et al (2020) From shape to function: the next step in bioprinting. Adv Mater 32(12):e1906423. https://doi.org/10.1002/adma.201906423
6. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351. https://doi.org/10.1016/S0142-9612(03)00340-5
7. Mota C, Camarero-Espinosa S, Baker MB et al (2020) Bioprinting: from tissue and organ development to in vitro models. Chem Rev 120(19):10547–10607. https://doi.org/10.1021/acs.chemrev.9b00789
8. Chaudhuri O, Gu L, Klumpers D et al (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15(3):326–334. https://doi.org/10.1038/nmat4489
9. Colosi C, Shin SR, Manoharan V et al (2016) Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater 28(4):677–684. https://doi.org/10.1002/adma.201503310
10. Ouyang LL, Armstrong JPK, Lin YY et al (2020) Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Sci Adv 6(38):eabc5529. https://doi.org/10.1126/sciadv.abc5529
11. Hirsch M, Charlet A, Amstad E (2021) 3D printing of strong and tough double network granular hydrogels. Adv Funct Mater 31(5):2005929. https://doi.org/10.1002/adfm.202005929
12. Armstrong JPK, Burke M, Carter BM et al (2016) 3D bioprinting using a templated porous bioink. Adv Healthc Mater 5(14):1724–1730. https://doi.org/10.1002/adhm.201600022
13. Seymour AJ, Shin S, Heilshorn SC (2021) 3D printing of microgel scaffolds with tunable void fraction to promote cell infiltration. Adv Healthc Mater 10(18):e2100644. https://doi.org/10.1002/adhm.202100644
14. Daly AC, Riley L, Segura T et al (2020) Hydrogel microparticles for biomedical applications. Nat Rev Mater 5(1):20–43. https://doi.org/10.1038/s41578-019-0148-6
15. Highley CB, Song KH, Daly AC et al (2019) Jammed microgel inks for 3D printing applications. Adv Sci 6(1):1801076. https://doi.org/10.1002/advs.201801076
16. Xin SJ, Deo KA, Dai J et al (2021) Generalizing hydrogel microparticles into a new class of bioinks for extrusion bioprinting. Sci Adv 7(42):eabk3087. https://doi.org/10.1126/sciadv.abk3087
17. Shao L, Gao Q, Xie CQ et al (2020) Sacrificial microgel-laden bioink-enabled 3D bioprinting of mesoscale pore networks. Bio-Des Manuf 3(1):30–39. https://doi.org/10.1007/s42242-020-00062-y
18. Ying GL, Jiang N, Maharjan S et al (2018) Aqueous two-phase emulsion bioink-enabled 3D bioprinting of porous hydrogels. Adv Mater 30(50):e1805460. https://doi.org/10.1002/adma.201805460
19. Yi SL, Liu Q, Luo ZY et al (2022) Micropore-forming gelatin methacryloyl (GelMA) bioink toolbox 2.0: designable tunability and adaptability for 3D bioprinting applications. Small 18(25):e2106357. https://doi.org/10.1002/smll.202106357
20. Ying GL, Jiang N, Parra-Cantu C et al (2020) Bioprinted injectable hierarchically porous gelatin methacryloyl hydrogel constructs with shape-memory properties. Adv Funct Mater 30(46):2003740. https://doi.org/10.1002/adfm.202003740
21. Chen FP, Li XF, Yu YF et al (2023) Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel. Nat Commun 14(1):2793. https://doi.org/10.1038/s41467-023-38394-9
22. Murphy SV, De Coppi P, Atala A (2020) Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng 4(4):370–380. https://doi.org/10.1038/s41551-019-0471-7
23. Loessner D, Meinert C, Kaemmerer E et al (2016) Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat Protoc 11(4):727–746. https://doi.org/10.1038/nprot.2016.037
24. Hull SM, Brunel LG, Heilshorn SC (2022) 3D bioprinting of cell-laden hydrogels for improved biological functionality. Adv Mater 34(2):e2103691. https://doi.org/10.1002/adma.202103691
25. Michiels C (2004) Physiological and pathological responses to hypoxia. Am J Pathol 164(6):1875–1882. https://doi.org/10.1016/S0002-9440(10)63747-9
26. Huo MF, Wang LY, Chen Y et al (2020) Oxygen pathology and oxygen-functional materials for therapeutics. Matter 2(5):1115–1147. https://doi.org/10.1016/j.matt.2020.02.013
27. Willemen NGA, Hassan S, Gurian M et al (2021) Oxygen-releasing biomaterials: current challenges and future applications. Trends Biotechnol 39(11):1144–1159. https://doi.org/10.1016/j.tibtech.2021.01.007
28. Ashammakhi N, Darabi MA, Kehr NS et al (2020) Advances in controlled oxygen generating biomaterials for tissue engineering and regenerative therapy. Biomacromol 21(1):56–72. https://doi.org/10.1021/acs.biomac.9b00546
29. Gholipourmalekabadi M, Zhao S, Harrison BS et al (2016) Oxygen-generating biomaterials: a new, viable paradigm for tissue engineering? Trends Biotechnol 34(12):1010–1021. https://doi.org/10.1016/j.tibtech.2016.05.012
30. Hsieh TE, Lin SJ, Chen LC et al (2020) Optimizing an injectable composite oxygen-generating system for relieving tissue hypoxia. Front Bioeng Biotechnol 8:511. https://doi.org/10.3389/fbioe.2020.00511
31. Lu Z, Jiang X, Chen MQ et al (2019) An oxygen-releasing device to improve the survival of mesenchymal stem cells in tissue engineering. Biofabrication 11(4):045012. https://doi.org/10.1088/1758-5090/ab332a
32. Erdem A, Darabi MA, Nasiri R et al (2020) 3D bioprinting of oxygenated cell-laden gelatin methacryloyl constructs. Adv Healthc Mater 9(15):e1901794. https://doi.org/10.1002/adhm.201901794
33. Suvarnapathaki S, Wu XC, Zhang TF et al (2022) Oxygen generating scaffolds regenerate critical size bone defects. Bioact Mater 13:64–81. https://doi.org/10.1016/j.bioactmat.2021.11.002
34. Farzin A, Hassan S, Teixeira LSM et al (2021) Self-oxygenation of tissues orchestrates full-thickness vascularization of living implants. Adv Funct Mater 31(42):2100850. https://doi.org/10.1002/adfm.202100850
35. Farris AL, Lambrechts D, Zhou YX et al (2022) 3D-printed oxygen-releasing scaffolds improve bone regeneration in mice. Biomaterials 280:121318. https://doi.org/10.1016/j.biomaterials.2021.121318
36. Khorshidi S, Karimi-Soflou R, Karkhaneh A (2021) A hydrogel/particle composite with a gradient of oxygen releasing microparticle for concurrent osteogenic and chondrogenic differentiation in a single scaffold. Colloid Surf B Biointerfaces 207:112007. https://doi.org/10.1016/j.colsurfb.2021.112007
37. Shiekh PA, Mohammed SA, Gupta S et al (2022) Oxygen releasing and antioxidant breathing cardiac patch delivering exosomes promotes heart repair after myocardial infarction. Chem Eng J 428:132490. https://doi.org/10.1016/j.cej.2021.132490
38. Chen HH, Cheng YH, Tian JR et al (2020) Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes. Sci Adv 6(20):eaba4311. https://doi.org/10.1126/sciadv.aba4311
39. Suvarnapathaki S, Wu XC, Lantigua D et al (2019) Breathing life into engineered tissues using oxygen-releasing biomaterials. NPG Asia Mater 11(1):65. https://doi.org/10.1038/s41427-019-0166-2
40. Guan Y, Niu H, Liu ZT et al (2021) Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation. Sci Adv 7(35):0153. https://doi.org/10.1126/sciadv.abj0153
41. Gomes FL, Jeong SH, Shin SR et al (2024) Engineering synthetic erythrocytes as next-generation blood substitutes. Adv Funct Mater (Early Access). https://doi.org/10.1002/adfm.202315879
42. Gao C, Lin ZH, Wang DL et al (2019) Red blood cell-mimicking micromotor for active photodynamic cancer therapy. ACS Appl Mater Interface 11(26):23392–23400. https://doi.org/10.1021/acsami.9b07979
43. Gao M, Liang C, Song XJ et al (2017) Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv Mater 29(35):1701429. https://doi.org/10.1002/adma.201701429
44. Maharjan S, Alva J, Cámara C et al (2021) Symbiotic photosynthetic oxygenation within 3D-bioprinted vascularized tissues. Matter 4(1):217–240. https://doi.org/10.1016/j.matt.2020.10.022
45. Sheng YJ, Nesbitt H, Callan B et al (2017) Oxygen generating nanoparticles for improved photodynamic therapy of hypoxic tumours. J Contr Rel 264:333–340. https://doi.org/10.1016/j.jconrel.2017.09.004
46. Willemen NGA, Hassan S, Gurian M et al (2022) Enzyme-mediated alleviation of peroxide toxicity in self-oxygenating biomaterials. Adv Healthc Mater 11(13):2102697. https://doi.org/10.1002/adhm.202102697
47. Chen Q, Feng LZ, Liu JJ et al (2016) Intelligent albumin–MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv Mater 28(33):7129–7136. https://doi.org/10.1002/adma.201601902
48. dos Santos DM, Dias LM, Surur AK et al (2022) Electrospun composite bead-on-string nanofibers containing CaO2 nanoparticles and MnO2 nanosheets as oxygen-release systems for biomedical applications. ACS Appl Nano Mater 5(10):14425–14436. https://doi.org/10.1021/acsanm.2c02774
49. Nichol JW, Koshy ST, Bae H et al (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31(21):5536–5544. https://doi.org/10.1016/j.biomaterials.2010.03.064
50. Sinha AK, Pradhan M, Pal T (2013) Morphological evolution of two-dimensional MnO2 nanosheets and their shape transformation to one-dimensional ultralong MnO2 nanowires for robust catalytic activity. J Phys Chem C 117(45):23976–23986. https://doi.org/10.1021/jp403527p
51. Zhu YH, Wang JL, Zhang HB et al (2019) Incorporation of a rhodamine B conjugated polymer for nanoparticle trafficking both in vitro and in vivo. Biomater Sci 7(5):1933–1939. https://doi.org/10.1039/c9bm00032a
52. Cho HH, Choi JH, Been SY et al (2020) Development of fluorescein isothiocyanate conjugated gellan gum for application of bioimaging for biomedical application. Int J Biol Macromol 164:2804–2812. https://doi.org/10.1016/j.ijbiomac.2020.08.146
53. Ou Y, Cao SX, Zhang Y et al (2023) Bioprinting microporous functional living materials from protein-based core-shell microgels. Nat Commun 14(1):322. https://doi.org/10.1038/s41467-022-35140-5
54. Tuftee C, Alsberg E, Ozbolat IT et al (2023) Emerging granular hydrogel bioinks to improve biological function in bioprinted constructs. Trends Biotechnol 42(3):339–352. https://doi.org/10.1016/j.tibtech.2023.09.007
55. Daly AC (2023) Granular hydrogels in biofabrication: recent advances and future perspectives. Adv Healthc Mater (Early Access). https://doi.org/10.1002/adhm.202301388
56. Yanagisawa M, Yamashita Y, Mukai SA et al (2014) Phase separation in binary polymer solution: gelatin/poly(ethylene glycol) system. J Mol Liq 200:2–6. https://doi.org/10.1016/j.molliq.2013.12.035
57. Yamashita Y, Yanagisawa M, Tokita M (2014) Sol–gel transition and phase separation in ternary system of gelatin-water–poly(ethylene glycol) oligomer. J Mol Liq 200:47–51. https://doi.org/10.1016/j.molliq.2014.03.016
58. Hassan S, Wang T, Shi K et al (2023) Self-oxygenation of engineered living tissues orchestrates osteogenic commitment of mesenchymal stem cells. Biomaterials 300:122179. https://doi.org/10.1016/j.biomaterials.2023.122179
59. Naghieh S, Chen XB (2021) Printability–a key issue in extrusion-based bioprinting. J Pharm Anal 11(5):564–579. https://doi.org/10.1016/j.jpha.2021.02.001
60. Hsu PH, Arboleda C, Stubelius A et al (2020) Highly responsive and rapid hydrogen peroxide-triggered degradation of polycaprolactone nanoparticles. Biomater Sci 8(9):2394–2397. https://doi.org/10.1039/c9bm02019e
61. Lykins WR, Bernards DA, Schlesinger EB et al (2022) Tuning polycaprolactone degradation for long acting implantables. Polymer 262:125473. https://doi.org/10.1016/j.polymer.2022.125473
62. Bartnikowski M, Dargaville TR, Ivanovski S et al (2019) Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Progr Polym Sci 96:1–20. https://doi.org/10.1016/j.progpolymsci.2019.05.004
63. Avila DS, Puntel RL, Aschner M (2013) Manganese in health and disease. Met Ions Life Sci 13:199–227. https://doi.org/10.1007/978-94-007-7500-8_7
64. Zakharcheva KA, Gening LV, Kazachenko KY et al (2017) Cells resistant to toxic concentrations of manganese have increased ability to repair DNA. Biochem Moscow 82(1):38–45. https://doi.org/10.1134/S0006297917010047
65. Chen J, Meng HM, Tian Y et al (2019) Recent advances in functionalized MnO2 nanosheets for biosensing and biomedicine applications. Nanoscale Horiz 4(2):321–338. https://doi.org/10.1039/c8nh00274f
66. Gray EP, Browning CL, Vaslet CA et al (2020) Chemical and colloidal dynamics of MnO2 nanosheets in biological media relevant for nanosafety assessment. Small 16(21):e2000303. https://doi.org/10.1002/smll.202000303
67. Browning CL, Green A, Gray EP et al (2021) Manganese dioxide nanosheets induce mitochondrial toxicity in fish gill epithelial cells. Nanotoxicology 15(3):400–417. https://doi.org/10.1080/17435390.2021.1874562
68. Mousavi Z, Hassanpourezatti M, Najafizadeh P et al (2016) Effects of subcutaneous injection MnO2 micro- and nanoparticles on blood glucose level and lipid profile in rat. Iran J Med Sci 41(6):518–524
关于本刊
Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,2023年公布的最新影响因子为7.9,位列JCR的Q1区,14/96,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区。
初审迅速:初审快速退稿,不影响作者投其它期刊。
审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。
收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。
文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。
期刊主页:
http://www.springer.com/journal/42242
http://www.jzus.zju.edu.cn/ (国内可下载全文)
在线投稿地址:
http://www.editorialmanager.com/bdmj/default.aspx
入群交流
围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码