内容简介
本研究论文聚焦静电纺丝/3D打印一体化多孔支架引导比格犬口腔组织再生。膜与骨填充移植物的联合应用是引导口腔软硬组织再生和功能重建的经典治疗方法。然而,由于骨粉易移位且机械支撑力不足,膜与骨粉联合应用不适用于皮质骨支撑不足或骨缺损较大的病例。GTR/GBR膜与三维多孔支架结合可能为大尺寸软硬组织缺损的修复和功能重建提供有效的解决方案。本研究将聚乳酸-羟基乙酸(PLGA)/鱼胶原(FC)电纺丝膜(PFC)与3D打印的PLGA/纳米羟基磷灰石(HA)支架(PHA)结合,成功制备了具有梯度结构的可生物降解多孔支架。上层纤维膜与下层3D支架主成分均包含PLGA,其成分的一致性使膜与3D支架之间形成牢固的界面结合。体外细胞实验显示PFC膜(上层)可有效阻止L929细胞向3D打印骨修复支架迁移。比格犬口腔软硬组织缺损修复实验显示该复合梯度支架能有效引导口腔缺损组织的再生。这些研究结果表明设计制备的梯度支架在促进口腔大尺寸软硬组织再生和功能重建方面具有巨大潜力。
引用本文(点击最下方阅读原文可下载PDF)
Yuan L, Yuan C, Wei J, et al., 2024. Electrospinning/3D printing-integrated porous scaffold guides oral tissue regeneration in beagles. Bio-des Manuf (Early Access). https://doi.org/10.1007/s42242-024-00311-4
文章导读
图1 一体化支架构建及动物实验流程图
图2 一体化支架结构形貌
图3 一体化支架的细胞相容性及电纺膜阻止成纤维细胞向3D打印支架迁移
图4 Micro-CT分析支架植入4和8周后拔牙窝新骨再生
图5 支架植入后8周比格犬牙槽骨标本的组织学分析
参考文献
上下滑动以阅览
1. Slots J (2022) Concise evaluation and therapeutic guidelines for severe periodontitis: a public health perspective. Periodontol 2000 90(1):262–265. https://doi.org/10.1111/prd.12463
2. Peres MA, Macpherson LMD, Weyant RJ et al (2019) Oral diseases: a global public health challenge. Lancet 394(10194):249–260. https://doi.org/10.1016/s0140-6736(19)31146-8
3. Kijartorn P, Wongpairojpanich J, Thammarakcharoen F et al (2022) Clinical evaluation of 3D printed nano-porous hydroxyapatite bone graft for alveolar ridge preservation: a randomized controlled trial. J Dent Sci 17(1):194–203. https://doi.org/10.1016/j.jds.2021.05.003
4. Sheikh Z, Hamdan N, Ikeda Y et al (2017) Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater Res 21(1):9. https://doi.org/10.1186/s40824-017-0095-5
5. Chappuis V, Rahman L, Buser R et al (2017) Effectiveness of contour augmentation with guided bone regeneration: 10-year results. J Dent Res 97(3):266–274. https://doi.org/10.1177/0022034517737755
6. Mertens C, Braun S, Krisam J et al (2019) The influence of wound closure on graft stability: an in vitro comparison of different bone grafting techniques for the treatment of one-wall horizontal bone defects. Clin Implant Dent Relat Res 21(2):284–291. https://doi.org/10.1111/cid.12728
7. Jung UW, Lee JS, Park WY et al (2011) Periodontal regenerative effect of a bovine hydroxyapatite/collagen block in one-wall intrabony defects in dogs: a histometric analysis. J Periodontal Implant Sci 41(6):285–292. https://doi.org/10.5051/jpis.2011.41.6.285
8. Bottino MC, Thomas V, Schmidt G et al (2012) Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective. Dent Mater 28(7):703–721. https://doi.org/10.1016/j.dental.2012.04.022
9. Ul Hassan S, Bilal B, Nazir MS et al (2021) Recent progress in materials development and biological properties of GTR membranes for periodontal regeneration. Chem Biol Drug Des 98(6):1007–1024. https://doi.org/10.1111/cbdd.13959
10. Hoogeveen EJ, Gielkens PFM, Schortinghuis J et al (2009) Vivosorb® as a barrier membrane in rat mandibular defects. An evaluation with transversal microradiography. Int J Oral Maxillofac Surg 38(8):870–875. https://doi.org/10.1016/j.ijom.2009.04.002
11. Doeri F, Huszar T, Nikolidakis D et al (2007) Effect of platelet-rich plasma on the healing of intra-bony defects treated with a natural bone mineral and a collagen membrane. J Clin Periodontol 34(3):254–261. https://doi.org/10.1111/j.1600-051X.2006.01044.x
12. Hassanbhai AM, Lau CS, Wen F et al (2017) In vivo immune responses of cross-linked electrospun tilapia collagen membrane. Tissue Eng Part A 23(19–20):1110–1119. https://doi.org/10.1089/ten.tea.2016.0504
13. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397. https://doi.org/10.3390/polym3031377
14. Lim YS, Ok YJ, Hwang SY et al (2019) Marine collagen as a promising biomaterial for biomedical applications. Mar Drugs 17(8):467. https://doi.org/10.3390/md17080467
15. Hoyer B, Bernhardt A, Lode A et al (2014) Jellyfish collagen scaffolds for cartilage tissue engineering. Acta Biomater 10(2):883–892. https://doi.org/10.1016/j.actbio.2013.10.022
16. Jin SE, Sun FH, Zou Q et al (2019) Fish collagen and hydroxyapatite reinforced poly(lactide-co-glycolide) fibrous membrane for guided bone regeneration. Biomacromol 20(5):2058–2067. https://doi.org/10.1021/acs.biomac.9b00267
17. Jin SE, Yang RL, Chu CY et al (2021) Topological structure of electrospun membrane regulates immune response, angiogenesis and bone regeneration. Acta Biomater 129:148–158. https://doi.org/10.1016/j.actbio.2021.05.042
18. Hu C, Chu CY, Liu L et al (2021) Dissecting the microenvironment around biosynthetic scaffolds in murine skin wound healing. Sci Adv 7(22):eabf0787. https://doi.org/10.1126/sciadv.abf0787
19. Lian MF, Han Y, Sun BB et al (2020) A multifunctional electrowritten bi-layered scaffold for guided bone regeneration. Acta Biomater 118:83–99. https://doi.org/10.1016/j.actbio.2020.08.017
20. Liu J, Zou Q, Wang CX et al (2021) Electrospinning and 3D printed hybrid bi-layer scaffold for guided bone regeneration. Mater Des 210:110047. https://doi.org/10.1016/j.matdes.2021.110047
21. Dou YC, Huang JH, Xia X et al (2021) A hierarchical scaffold with a highly pore-interconnective 3D printed PLGA/n-HA framework and an extracellular matrix like gelatin network filler for bone regeneration. J Mater Chem B 9(22):4488–4501. https://doi.org/10.1039/d1tb00662b
22. Xia X, Huang JH, Wei JW et al (2022) Magnesium oxide regulates the degradation behaviors and improves the osteogenesis of poly(lactide-co-glycolide) composite scaffolds. Compos Sci Technol 222:109368. https://doi.org/10.1016/j.compscitech.2022.109368
23. Wei JW, Xia X, Xiao SQ et al (2023) Sequential dual-biofactor release from the scaffold of mesoporous HA microspheres and PLGA matrix for boosting endogenous bone regeneration. Adv Healthcare Mater 12(20):e2300624. https://doi.org/10.1002/adhm.202300624
24. Li LM, Zuo Y, Zou Q et al (2015) Hierarchical structure and mechanical improvement of an n-HA/GCO-PU composite scaffold for bone regeneration. ACS Appl Mater Interfaces 7(40):22618–22629. https://doi.org/10.1021/acsami.5b07327
25. Hagenaars S, Louwerse PHG, Timmerman MF et al (2004) Soft-tissue wound healing following periodontal surgery and Emdogain® application. J Clin Periodontol 31(10):850–856. https://doi.org/10.1111/j.1600-051x.2004.00571.x
26. Tonetti MS, Fourmousis I, Suvan J et al (2004) Healing, post-operative morbidity and patient perception of outcomes following regenerative therapy of deep intrabony defects. J Clin Periodontol 31(12):1092–1098. https://doi.org/10.1111/j.1600-051x.2004.00615.x
27. Huang LH, Neiva REF, Wang HL (2005) Factors affecting the outcomes of coronally advanced flap root coverage procedure. J Periodontol 76(10):1729–1734. https://doi.org/10.1902/jop.2005.76.10.1729
28. Jin SE, Gao J, Yang RL et al (2022) A baicalin-loaded coaxial nanofiber scaffold regulated inflammation and osteoclast differentiation for vascularized bone regeneration. Bioact Mater 8:559–572. https://doi.org/10.1016/j.bioactmat.2021.06.028
29. Irvine DJ, Hue KA, Mayes AM et al (2002) Simulations of cell-surface integrin binding to nanoscale-clustered adhesion ligands. Biophys J 82(1):120–132. https://doi.org/10.1016/S0006-3495(02)75379-4
30. ter Brugge PJ, Torensma R, De Ruijter JE et al (2002) Modulation of integrin expression on rat bone marrow cells by substrates with different surface characteristics. Tissue Eng 8(4):615–626. https://doi.org/10.1089/107632702760240535
31. Yang K, Jung H, Lee HR et al (2014) Multiscale, hierarchically patterned topography for directing human neural stem cells into functional neurons. ACS Nano 8(8):7809–7822. https://doi.org/10.1021/nn501182f
32. Yao X, Peng R, Ding JD (2013) Cell-material interactions revealed via material techniques of surface patterning. Adv Mater 25(37):5257–5286. https://doi.org/10.1002/adma.201301762
33. Matsiko A, Gleeson JP, O’Brien FJ (2015) Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. Tissue Eng Part A 21(3–4):486–497. https://doi.org/10.1089/ten.tea.2013.0545
34. Tan XP, Tan YJ, Chow CSL et al (2017) Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater Sci Eng C 76:1328–1343. https://doi.org/10.1016/j.msec.2017.02.094
35. Dziaduszewska M, Zieliński A (2021) Structural and material determinants influencing the behavior of porous Ti and its alloys made by additive manufacturing techniques for biomedical applications. Materials 14(4):712. https://doi.org/10.3390/ma14040712
36. Liu JJ, Lan L, Zhou JF et al (2019) Influence of cancellous bone microstructure on ultrasonic attenuation: a theoretical prediction. Biomed Eng Online 18(1):103. https://doi.org/10.1186/s12938-019-0724-4
37. Hing KA (2005) Bioceramic bone graft substitutes: influence of porosity and chemistry. Int J Appl Ceram Technol 2(3):184–199. https://doi.org/10.1111/j.1744-7402.2005.02020.x
38. Kim HK, Park TG (2004) Comparative study on sustained release of human growth hormone from semi-crystalline poly(L-lactic acid) and amorphous poly(D, L-lactic-co-glycolic acid) microspheres: morphological effect on protein release. J Contr Rel 98(1):115–125. https://doi.org/10.1016/j.jconrel.2004.04.020
39. Tavakoli E, Mehdikhani-Nahrkhalaji M, Hashemi-Beni B et al (2015) Preparation, characterization and mechanical assessment of poly (lactide-co-glycolide)/ hyaluronic acid/ fibrin/ bioactive glass nano-composite scaffolds for cartilage tissue engineering applications. Procedia Mater Sci 11:124–130. https://doi.org/10.1016/j.mspro.2015.11.126
40. Heu MS, Lee JH, Kim HJ et al (2010) Characterization of acid- and pepsin-soluble collagens from flatfish skin. Food Sci Biotechnol 19(1):27–33. https://doi.org/10.1007/s10068-010-0004-3
41. Zou Y, Wang L, Cai PP et al (2017) Effect of ultrasound assisted extraction on the physicochemical and functional properties of collagen from soft-shelled turtle calipash. Int J Biol Macromol 105(Pt 3):1602–1610. https://doi.org/10.1016/j.ijbiomac.2017.03.011
42. Rapacz-Kmita A, Paluszkiewicz C, Slosarczyk A et al (2005) FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes. J Mol Struct 744:653–656. https://doi.org/10.1016/j.molstruc.2004.11.070
43. Kang BS, Choi JS, Lee SE et al (2017) Enhancing the in vitro anticancer activity of albendazole incorporated into chitosan-coated PLGA nanoparticles. Carbohydr Polym 159:39–47. https://doi.org/10.1016/j.carbpol.2016.12.009
44. Ortolani E, Quadrini F, Bellisario D et al (2015) Mechanical qualification of collagen membranes used in dentistry. Ann Ist Super Sanita 51(3):229–235. https://doi.org/10.4415/ANN_15_03_11
45. Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA (2015) Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. Biomed Res Int 2015:729076. https://doi.org/10.1155/2015/729076
46. Rodriguez A, Anastassov GE, Lee H et al (2003) Maxillary sinus augmentation with deproteinated bovine bone and platelet rich plasma with simultaneous insertion of endosseous implants. J Oral Maxillofac Surg 61(2):157–163. https://doi.org/10.1053/joms.2003.50041
47. Liu WJ, Li YY, Ding XT (2017) Cell adhesion pattern created by OSTE polymers. Biofabrication 9(2):025006. https://doi.org/10.1088/1758-5090/aa669c
48. Chen RX, Wan YQ, Wu WW et al (2019) A lotus effect-inspired flexible and breathable membrane with hierarchical electrospinning micro/nanofibers and ZnO nanowires. Mater Des 162:246–248. https://doi.org/10.1016/j.matdes.2018.11.041
49. Mitra T, Manna PJ, Raja STK et al (2015) Curcumin loaded nano graphene oxide reinforced fish scale collagen—a 3D scaffold biomaterial for wound healing applications. RSC Adv 5(119):98653–98665. https://doi.org/10.1039/c5ra15726a
50. Park JW, Kim YJ, Park CH et al (2009) Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Acta Biomater 5(8):3272–3280. https://doi.org/10.1016/j.actbio.2009.04.038
51. Lin KL, Xia LG, Gan JB et al (2013) Tailoring the nanostructured surfaces of hydroxyapatite bioceramics to promote protein adsorption, osteoblast growth, and osteogenic differentiation. ACS Appl Mater Interfaces 5(16):8008–8017. https://doi.org/10.1021/am402089w
52. Fu C, Bai HT, Zhu JQ et al (2017) Enhanced cell proliferation and osteogenic differentiation in electrospun PLGA/hydroxyapatite nanofibre scaffolds incorporated with graphene oxide. PLoS ONE 12(11):e0188352. https://doi.org/10.1371/journal.pone.0188352
53. Kim SH, Ha HJ, Ko YK et al (2007) Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability. J Biomater Sci Polym Ed 18(5):609–622. https://doi.org/10.1163/156856207780852514
54. Lee JH, Khang G, Lee JW et al (1998) Interaction of different types of cells on polymer surfaces with wettability gradient. J Colloid Interface Sci 205(2):323–330. https://doi.org/10.1006/jcis.1998.5688
55. Hughes FJ (2005) Color atlas of dental medicine: periodontology. Br Dent J 198(10):655–655. https://doi.org/10.1038/sj.bdj.4812424
56. Wang JL, Wang LN, Zhou ZY et al (2016) Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review. Polymers 8(4):115. https://doi.org/10.3390/polym8040115
57. Einhorn TA, Gerstenfeld LC (2014) Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 11(1):45–54. https://doi.org/10.1038/nrrheum.2014.164
58. Ho-Shui-Ling A, Bolander J, Rustom LE et al (2018) Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 180:143–162. https://doi.org/10.1016/j.biomaterials.2018.07.017
59. Rezwan K, Chen QZ, Blaker JJ et al (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431. https://doi.org/10.1016/j.biomaterials.2006.01.039
60. Puppi D, Chiellini F, Piras AM et al (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35(4):403–440. https://doi.org/10.1016/j.progpolymsci.2010.01.006
61. Huang JH, Xia X, Zou Q et al (2019) The long-term behaviors and differences in bone reconstruction of three polymer-based scaffolds with different degradability. J Mater Chem B 7(48):7690–7703. https://doi.org/10.1039/c9tb02072a
62. Goor OJGM, Hendrikse SIS, Dankers PYW et al (2017) From supramolecular polymers to multi-component biomaterials. Chem Soc Rev 46(21):6621–6637. https://doi.org/10.1039/c7cs00564d
63. Jeevithan E, Zhao QB, Bin B et al (2013) Biomedical and pharmaceutical application of fish collagen and gelatin: a review. J Nutr Ther 2(4):218–227. https://doi.org/10.6000/1929-5634.2013.02.04.6
64. Zhou T, Wang NP, Xue Y et al (2016) Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf B Biointerfaces 143:415–422. https://doi.org/10.1016/j.colsurfb.2016.03.052
65. Hu LR, Xiang SJ, Liu JY et al (2022) Combigraft versus Bio-Oss/Bio-Gide in alveolar ridge preservation: a prospective randomized controlled trial. Oral Surg 15(2):163–169. https://doi.org/10.1111/ors.12687
66. Sumangali A, Naik AC, Mohan N et al (2021) Bone regenerative biomaterials in periapical surgery: a systemic review and meta-analysis. J Pharm BioAllied Sci 13(Suppl 2):S933–S937. https://doi.org/10.4103/jpbs.jpbs_386_21
67. Zhao SJ, Pinholt EM, Madsen JE et al (2000) Histological evaluation of different biodegradable and non-biodegradable membranes implanted subcutaneously in rats. J Cranio-Maxillofac Surg 28(2):116–122. https://doi.org/10.1054/jcms.2000.0127
68. Rothamel D, Schwarz F, Sager M et al (2005) Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat. Clin Oral Implants Res 16(3):369–378. https://doi.org/10.1111/j.1600-0501.2005.01108.x
关于本刊
Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。
初审迅速:初审快速退稿,不影响作者投其它期刊。
审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。
收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。
文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。
期刊主页:
http://www.springer.com/journal/42242
http://www.jzus.zju.edu.cn/ (国内可下载全文)
在线投稿地址:
http://www.editorialmanager.com/bdmj/default.aspx
入群交流
围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码