中国科学院半导体研究所王丽丽团队 | 无串扰双模态汗液传感集成系统通过结构反射率变化直观定量汗液的流失

文摘   2024-08-15 16:59   浙江  

内容简介


本研究论文提出了一种可用于各种柔性基材的新型激光雕刻表面粗糙化策略。该加工方法可构建在汗液填充前后显示出明显的结构反射率变化的微流道。通过利用这些独特的光学特性改变,我们开发了一种完全激光雕刻的微流体装置,用于裸眼量化汗液流失。该汗液流失传感器的体积分辨率为0.5 μL,总体积容量为11 μL,并且可以个性化定制以满足不同的性能需求。基于此,本文报道了一种无串扰双模态汗液微流体系统,该系统集成了 Ag/AgCl 氯离子传感器及其匹配的无线测量柔性印刷电路板。该集成系统能够实时监测汗液流失比色信号和离子浓度电压信号,且这种双模态读数不会产生串扰。最后,我们通过体表佩戴运动排汗研究,揭示了人体汗液氯离子浓度与出汗率之间的正相关性,展示了这种微流控汗液流失传感器及其集成系统在运动医学中的潜在用途价值。


引用本文(点击最下方阅读原文可下载PDF)

Zhong B, Xu H, Qin X, et al., 2024. A crosstalk-free dual-mode sweat sensing system for naked-eye sweat loss quantification via changes in structural reflectance. Bio-des Manuf 7(4):428–438. https://doi.org/10.1007/s42242-024-00294-2

文章导读



图1 系统的运行原理和结构设计


图2 用于汗液流失检测的微流控模块性能表征


图3 用于氯离子浓度检测的电化学模块性能表征及其集成系统的无串扰双模态测量


图4 系统的在体汗液监测

参考文献

上下滑动以阅览

1. Zhong BW, Qin XK, Wang LL (2024) Interindividual- and blood-correlated sweat phenylalanine multimodal analytical biochips for tracking exercise metabolism. Nat Commun 15:624. https://doi.org/10.1038/s41467-024-44751-z

2. Shi YQ, Zhang ZY, Huang QY et al (2023) Wearable sweat biosensors on textiles for health monitoring. J Semicond 44(2):021601. https://doi.org/10.1088/1674-4926/44/2/021601

3. Choi J, Ghaffari R, Baker LB et al (2018) Skin-interfaced systems for sweat collection and analytics. Sci Adv 4(2):eaar3921. https://doi.org/10.1126/sciadv.aar3921

4. Wang JJ, Xu BZ, Zhu YF et al (2023) Microcantilever sensors for biochemical detection. J Semicond 44(2):023105. https://doi.org/10.1088/1674-4926/44/2/023105

5. Emaminejad S, Gao W, Wu E et al (2017) Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc Natl Acad Sci USA 114(18):4625–4630. https://doi.org/10.1073/pnas.1701740114

6. Wang B, Zhao CZ, Wang ZQ et al (2022) Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci Adv 8(1):eabk0967. https://doi.org/10.1126/sciadv.abk0967

7. Liu XF, Qiu SY, Fang HP et al (2023) A brief review of novel nucleic acid test biosensors and their application prospects for salmonids viral diseases detection. J Semicond 44(2):023103. https://doi.org/10.1088/1674-4926/44/2/023103

8. Zheng JH, Feng CY, Qiu SY et al (2023) Application and prospect of semiconductor biosensors in detection of viral zoonoses. J Semicond 44(2):023102. https://doi.org/10.1088/1674-4926/44/2/023102

9. Sempionatto JR, Lasalde-Ramírez JA, Mahato K et al (2022) Wearable chemical sensors for biomarker discovery in the omics era. Nat Rev Chem 6(12):899–915. https://doi.org/10.1038/s41570-022-00439-w

10. Yang DS, Ghaffari R, Rogers JA (2023) Sweat as a diagnostic biofluid. Science 379(6634):760–761. https://doi.org/10.1126/science.abq5916

11. Zhong BW, Jiang K, Wang LL et al (2022) Wearable sweat loss measuring devices: from the role of sweat loss to advanced mechanisms and designs. Adv Sci 9(1):e2103257. https://doi.org/10.1002/advs.202103257

12. Sonner Z, Wilder E, Heikenfeld J et al (2015) The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 9(3):031301. https://doi.org/10.1063/1.4921039

13. Baker LB, Wolfe AS (2020) Physiological mechanisms determining eccrine sweat composition. Eur J Appl Physiol 120(4):719–752. https://doi.org/10.1007/s00421-020-04323-7

14. Nyein HYY, Bariya M, Kivimaki L et al (2019) Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci Adv 5(8):eaaw9906. https://doi.org/10.1126/sciadv.aaw9906

15. Harshman SW, Strayer KE, Davidson CN et al (2020) Rate normalization for sweat metabolomics biomarker discovery. Talanta 223(Pt 1):121797. https://doi.org/10.1016/j.talanta.2020.121797

16. Baker LB, Model JB, Barnes KA et al (2020) Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Sci Adv 6(50):eabe3929. https://doi.org/10.1126/sciadv.abe3929

17. Villiger M, Stoop R, Vetsch T et al (2018) Evaluation and review of body fluids saliva, sweat and tear compared to biochemical hydration assessment markers within blood and urine. Eur J Clin Nutr 72(1):69–76. https://doi.org/10.1038/ejcn.2017.136

18. Liu YCY, Li XF, Yang HL et al (2023) Skin-interfaced superhydrophobic insensible sweat sensors for evaluating body thermoregulation and skin barrier functions. ACS Nano 17(6):5588–5599. https://doi.org/10.1021/acsnano.2c11267

19. Jain V, Ochoa M, Jiang HJ et al (2019) A mass-customizable dermal patch with discrete colorimetric indicators for personalized sweat rate quantification. Microsyst Nanoeng 5(1):29. https://doi.org/10.1038/s41378-019-0067-0

20. Zhao FJ, Bonmarin M, Chen ZC et al (2020) Ultra-simple wearable local sweat volume monitoring patch based on swellable hydrogels. Lab Chip 20(1):168–174. https://doi.org/10.1039/c9lc00911f

21. Parrilla M, Guinovart T, Ferre J et al (2019) A wearable paper-based sweat sensor for human perspiration monitoring. Adv Healthc Mater 8(16):1900342. https://doi.org/10.1002/adhm.201900342

22. Vaquer A, Baron E, de la Rica R (2020) Wearable analytical platform with enzyme-modulated dynamic range for the simultaneous colorimetric detection of sweat volume and sweat biomarkers. ACS Sens 6(1):130–136. https://doi.org/10.1021/acssensors.0c01980

23. Liu MY, Wang SQ, Xiong ZP et al (2023) Perspiration permeable, textile embeddable microfluidic sweat sensor. Biosens Bioelectron 237:115504. https://doi.org/10.1016/j.bios.2023.115504

24. Yuan Z, Hou L, Bariya M et al (2019) A multi-modal sweat sensing patch for cross-verification of sweat rate, total ionic charge, and Na+ concentration. Lab Chip 19(19):3179–3189. https://doi.org/10.1039/c9lc00598f

25. Nyein HYY, Bariya M, Tran B et al (2021) A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat Commun 12(1):1823. https://doi.org/10.1038/s41467-021-22109-z

26. Nyein HYY, Tai LC, Ngo QP et al (2018) A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens 3(5):944–952. https://doi.org/10.1021/acssensors.7b00961

27. Hourlier-Fargette A, Schon S, Xue YG et al (2020) Skin-interfaced soft microfluidic systems with modular and reusable electronics for in situ capacitive sensing of sweat loss, rate and conductivity. Lab Chip 20(23):4391–4403. https://doi.org/10.1039/d0lc00705f

28. Choi DH, Gonzales M, Kitchen GB et al (2020) A capacitive sweat rate sensor for continuous and real-time monitoring of sweat loss. ACS Sens 5(12):3821–3826. https://doi.org/10.1021/acssensors.0c01219

29. Bariya M, Davis N, Gillan L et al (2022) Resettable microfluidics for broad-range and prolonged sweat rate sensing. ACS Sens 7(4):1156–1164. https://doi.org/10.1021/acssensors.2c00177

30. Wang SQ, Liu MY, Yang XQ et al (2022) An unconventional vertical fluidic-controlled wearable platform for synchronously detecting sweat rate and electrolyte concentration. Biosens Bioelectron 210:114351. https://doi.org/10.1016/j.bios.2022.114351

31. Ghaffari R, Aranyosi AJ, Lee SP et al (2023) The Gx sweat patch for personalized hydration management. Nat Rev Bioeng 1(1):5–7. https://doi.org/10.1038/s44222-022-00005-5

32. Matzeu G, Fay C, Vaillant A et al (2016) A wearable device for monitoring sweat rates via image analysis. IEEE Trans Biomed Eng 63(8):1672–1680. https://doi.org/10.1109/TBME.2015.2477676

33. Liu WY, Cheng HY, Wang XF (2023) Skin-interfaced colorimetric microfluidic devices for on-demand sweat analysis. npj Flex Electron 7(1):43. https://doi.org/10.1038/s41528-023-00275-y

34. Koh A, Kang D, Xue YG et al (2016) A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci Transl Med 8(366):366ra165. https://doi.org/10.1126/scitranslmed.aaf2593

35. Reeder JT, Choi J, Xue YG et al (2019) Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. Sci Adv 5(1):eaau6356. https://doi.org/10.1126/sciadv.aau6356

36. Bandodkar AJ, Gutruf P, Choi J et al (2019) Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci Adv 5(1):eaav3294. https://doi.org/10.1126/sciadv.aav3294

37. Wu WT, Li LL, Li ZX et al (2023) Extensible integrated system for real-time monitoring of cardiovascular physiological signals and limb health. Adv Mater 35(51):e2304596. https://doi.org/10.1002/adma.202304596

38. Zhang Y, Guo HX, Kim SB et al (2019) Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system. Lab Chip 19(9):1545–1555. https://doi.org/10.1039/c9lc00103d

39. Wu CH, Ma HJH, Baessler P et al (2023) Skin-interfaced microfluidic systems with spatially engineered 3D fluidics for sweat capture and analysis. Sci Adv 9(18):eadg4272. https://doi.org/10.1126/sciadv.adg4272

40. Qin DT, Gibbons AH, Ito MM et al (2022) Structural colour enhanced microfluidics. Nat Commun 13(1):2281. https://doi.org/10.1038/s41467-022-29956-4

41. Reeder JT, Xue YG, Franklin D et al (2019) Resettable skin interfaced microfluidic sweat collection devices with chemesthetic hydration feedback. Nat Commun 10(1):5513. https://doi.org/10.1038/s41467-019-13431-8

42. Niu PF, Liu YY, Wang XH et al (2022) Darkening of laser-induced graphene in wet for readable in situ real time sweating rate analysis. Adv Mater Interfaces 9(6):2102026. https://doi.org/10.1002/admi.202102026

43. Yang YR, Song Y, Bo XJ et al (2019) A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol 38(2):217–224. https://doi.org/10.1038/s41587-019-0321-x

44. Bi YN, Sun MM, Wang JJ et al (2023) Universal fully integrated wearable sensor arrays for the multiple electrolyte and metabolite monitoring in raw sweat, saliva, or urine. Anal Chem 95(16):6690–6699. https://doi.org/10.1021/acs.analchem.3c00361

45. Min JH, Tu JB, Xu CH et al (2023) Skin-interfaced wearable sweat sensors for precision medicine. Chem Rev 123(8):5049–5138. https://doi.org/10.1021/acs.chemrev.2c00823

46. Xu G, Cheng C, Yuan W et al (2019) Smartphone-based battery-free and flexible electrochemical patch for calcium and chloride ions detections in biofluids. Sens Actuat B 297:126743. https://doi.org/10.1016/j.snb.2019.126743

47. Liu CH, Xu TL, Wang DD et al (2020) The role of sampling in wearable sweat sensors. Talanta 212:120801. https://doi.org/10.1016/j.talanta.2020.120801

48. Eijsvogels TMH, Veltmeijer MTW, Schreuder THA et al (2011) The impact of obesity on physiological responses during prolonged exercise. Int J Obes 35(11):1404–1412. https://doi.org/10.1038/ijo.2010.277


关于本刊

Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。


初审迅速:初审快速退稿,不影响作者投其它期刊。

审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。

收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。

文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。


期刊主页:

http://www.springer.com/journal/42242

http://www.jzus.zju.edu.cn/ (国内可下载全文)

在线投稿地址:

http://www.editorialmanager.com/bdmj/default.aspx


入群交流

围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码

生物设计与制造BDM
论文导读、领域资讯
 最新文章