内容简介
本研究论文聚焦通过简单策略调控熔融挤出式增材制造应用中表面接枝生物分子的密度。熔融挤出增材制造(ME-AM)是制备组织工程应用中多孔支架的一种有前途的技术。然而,大多数合成半晶聚合物并不具有控制细胞命运所需的内在生物活性。在增材制造支架的聚合物表面接枝生物分子可以增强构造物的生物活性,然而,目前可用于控制表面密度的策略有限。本文报道了一种通过混合含有正交反应性叠氮基团的低分子量聚己内酯(PCL5k)和未官能化的高分子量聚己内酯(PCL75k)以不同比例来调控生物活性基团表面密度的策略。本文作者使用高含量(75 wt.%)的低分子量PCL5k制备了稳定的多孔三维支架。作为概念验证,作者使用热压机制备了三种不同质量比的低分子量和高分子量聚合物薄膜,并在表面与炔基化荧光模型化合物反应,得到了201–561 pmol/cm2的密度。随后,将骨形态发生蛋白2(BMP-2)导源肽接枝到包含不同混合比例的薄膜上,并评估肽表面密度对人间充质干细胞(hMSCs)骨发生分化的影响。在基础培养基中培养两周后,细胞在具有共轭肽的薄膜上表达较高水平的BMP受体II(BMPRII)。此外,研究发现碱性磷酸酶活性仅在含有最高肽密度(即561 pmol/cm2)的薄膜上显著增强,表明表面密度的重要性。综上所述,这些结果强调了在细胞-材料界面处,必须考虑表面肽的密度对细胞分化的影响。此外,提出一种可行的ME-AM策略,可通过混合(修饰的)聚合物来调控体块和表面功能。再者,炔基-叠氮点击化学反应可实现对许多组织特异性成分的空间控制,使这种方法成为组织工程应用的多功能策略。
引用本文(点击最下方阅读原文可下载PDF)
Beeren IAO, Dos Santos G, Dijkstra PJ, et al., 2024. A facile strategy for tuning the density of surface-grafted biomolecules for melt extrusion-based additive manufacturing applications. Bio-des. Manuf 7(3):277–291. https://doi.org/10.1007/s42242-024-00286-2
文章导读
图1 本研究的概述示意图
图2 不同混合聚合物比例制备的ME-AM支架
图3 压缩测试中支架的机械性能
图4 测定在含有不同表面化合物密度的脱氮基表面薄膜上的炔基模型化合物的表面密度
图5 在上面板和下面板的αN3 εCL-co-εCL薄膜上,有和没有连接的BMP-2衍生肽的hMSCs荧光图像
参考文献
上下滑动以阅览
1. Madrid APM, Vrech SM, Sanchez MA et al (2019) Advances in additive manufacturing for bone tissue engineering scaffolds. Mater Sci Eng C 100:631–644. https://doi.org/10.1016/j.msec.2019.03.037
2. van Kampen KA, Fernández-Pérez J, Baker M et al (2022) Fabrication of a mimetic vascular graft using melt spinning with tailorable fiber parameters. Biomater Adv 139:212972. https://doi.org/10.1016/j.bioadv.2022.212972
3. Valainis D, Dondl P, Foehr P et al (2019) Integrated additive design and manufacturing approach for the bioengineering of bone scaffolds for favorable mechanical and biological properties. Biomed Mater 14(6):065002. https://doi.org/10.1088/1748-605X/ab38c6
4. Huo XD, Zhang B, Han QL et al (2023) Numerical simulation and printability analysis of fused deposition modeling with dual-temperature control. Bio-Des Manuf 6(2):174–188. https://doi.org/10.1007/s42242-023-00239-1
5. Moroni L, de Wijn JR, van Blitterswijk CA (2006) 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 27(7):974–985. https://doi.org/10.1016/j.biomaterials.2005.07.023
6. Woodfield TBF, van Blitterswijk CA, de Wijn J et al (2005) Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Eng 11(9–10):1297–1311. https://doi.org/10.1089/ten.2005.11.1297
7. Schipani R, Scheurer S, Florentin R et al (2020) Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites. Biofabrication 12(3):035011. https://doi.org/10.1088/1758-5090/ab8708
8. Leferink AM, Hendrikson WJ, Rouwkema J et al (2016) Increased cell seeding efficiency in bioplotted three-dimensional PEOT/PBT scaffolds. J Tissue Eng Regen Med 10(8):679–689. https://doi.org/10.1002/term.1842
9. Paetzold R, Coulter FB, Singh G et al (2022) Fused filament fabrication of polycaprolactone bioscaffolds: influence of fabrication parameters and thermal environment on geometric fidelity and mechanical properties. Bioprinting 27:e00206. https://doi.org/10.1016/j.bprint.2022.e00206
10. Grémare A, Guduric V, Bareille R et al (2018) Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Mater Res Part A 106:887–894. https://doi.org/10.1002/jbm.a.36289
11. Camarero-Espinosa S, Calore A, Wilbers A et al (2020) Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering. Acta Biomater 102:192–204. https://doi.org/10.1016/j.actbio.2019.11.041
12. Camarero-Espinosa S, Tomasina C, Calore A et al (2020) Additive manufactured, highly resilient, elastic, and biodegradable poly(ester)urethane scaffolds with chondroinductive properties for cartilage tissue engineering. Mater Today Bio 6:100051. https://doi.org/10.1016/J.MTBIO.2020.100051
13. Woodfield TBF, Malda J, de Wijn J et al (2004) Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25(18):4149–4161. https://doi.org/10.1016/j.biomaterials.2003.10.056
14. Altıparmak SC, Yardley VA, Shi ZS et al (2022) Extrusion-based additive manufacturing technologies: state of the art and future perspectives. J Manuf Process 83:607–636. https://doi.org/10.1016/j.jmapro.2022.09.032
15. Mao AS, Shin JW, Mooney DJ (2016) Effects of substrate stiffness and cell-cell contact on mesenchymal stem cell differentiation. Biomaterials 98:184–191. https://doi.org/10.1016/j.biomaterials.2016.05.004
16. Sridharan R, Kelly DJ, O’Brien FJ (2021) Substrate stiffness modulates the crosstalk between mesenchymal stem cells and macrophages. J Biomech Eng 143(3):031001. https://doi.org/10.1115/1.4048809
17. Chaudhuri O, Gu L, Darnell M et al (2015) Substrate stress relaxation regulates cell spreading. Nat Commun 6(1):6365. https://doi.org/10.1038/ncomms7365
18. Di Luca A, Longoni A, Criscenti G et al (2016) Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regeneration. Biofabrication 8(1):015014. https://doi.org/10.1088/1758-5090/8/1/015014
19. Hendrikson WJ, Rouwkema J, van Blitterswijk CA et al (2015) Influence of PCL molecular weight on mesenchymal stromal cell differentiation. RSC Adv 5(67):54510–54516. https://doi.org/10.1039/C5RA08048G
20. Tamaddon M, Blunn G, Tan RW et al (2022) In vivo evaluation of additively manufactured multi-layered scaffold for the repair of large osteochondral defects. Bio-Des Manuf 5(3):481–496. https://doi.org/10.1007/s42242-021-00177-w
21. Lories RJ, Luyten FP (2011) The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol 7(1):43–49. https://doi.org/10.1038/nrrheum.2010.197
22. Guo JL, Diaz-Gomez L, Xie VY et al (2021) Three-dimensional printing of click functionalized, peptide patterned scaffolds for osteochondral tissue engineering. Bioprinting 22:e00136. https://doi.org/10.1016/j.bprint.2021.e00136
23. Camacho P, Behre A, Fainor M et al (2021) Spatial organization of biochemical cues in 3D-printed scaffolds to guide osteochondral tissue engineering. Biomater Sci 9(2):6813–6829. https://doi.org/10.1039/d1bm00859e
24. Gloria A, Causa F, Russo T et al (2012) Three-dimensional poly(ε-caprolactone) bioactive scaffolds with controlled structural and surface properties. Biomacromol 13(11):3510–3521. https://doi.org/10.1021/bm300818y
25. Cometta S, Jones RT, Juárez-Saldivar A et al (2022) Melimine-modified 3D-printed polycaprolactone scaffolds for the prevention of biofilm-related biomaterial infections. ACS Nano 16(10):16497–16512. https://doi.org/10.1021/acsnano.2c05812
26. Ainsworth MJ, Lotz O, Gilmour A et al (2023) Covalent protein immobilization on 3D-printed microfiber meshes for guided cartilage regeneration. Adv Funct Mater 33(2):2206583. https://doi.org/10.1002/adfm.202206583
27. Di Luca A, Klein-Gunnewiek M, Vancso JG et al (2017) Covalent binding of bone morphogenetic protein-2 and transforming growth factor-β3 to 3D plotted scaffolds for osteochondral tissue regeneration. Biotechnol J 12(12):1700072. https://doi.org/10.1002/biot.201700072
28. Li S, Xu YY, Yu JY et al (2017) Enhanced osteogenic activity of poly(ester urea) scaffolds using facile post-3D printing peptide functionalization strategies. Biomaterials 141:176–187. https://doi.org/10.1016/j.biomaterials.2017.06.038
29. Beeren IAO, Dijkstra PJ, Lourenço AFH et al (2023) Installation of click-type functional groups enable the creation of an additive manufactured construct for the osteochondral interface. Biofabrication 15(1):014106. https://doi.org/10.1088/1758-5090/aca3d4
30. Luong LN, Ramaswamy J, Kohn DH (2012) Effects of osteogenic growth factors on bone marrow stromal cell differentiation in a mineral-based delivery system. Biomaterials 33(1):283–294. https://doi.org/10.1016/j.biomaterials.2011.09.052
31. Camarero-Espinosa S, Cooper-White JJ (2019) Combinatorial presentation of cartilage-inspired peptides on nanopatterned surfaces enables directed differentiation of human mesenchymal stem cells towards distinct articular chondrogenic phenotypes. Biomaterials 210:105–115. https://doi.org/10.1016/j.biomaterials.2019.04.003
32. Vega SL, Kwon MY, Song KH et al (2018) Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nat Commun 9(1):614. https://doi.org/10.1038/s41467-018-03021-5
33. James AW, LaChaud G, Shen J et al (2016) A review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng Part B Rev 22(4):284–297. https://doi.org/10.1089/ten.teb.2015.0357
34. Saito A, Suzuki Y, Ogata SI et al (2003) Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochim Biophys Acta Prot Proteom 1651(1):60–67. https://doi.org/10.1016/S1570-9639(03)00235-8
35. Saito A, Suzuki Y, Ogata SI et al (2005) Accelerated bone repair with the use of a synthetic BMP-2-derived peptide and bone-marrow stromal cells. J Biomed Mater Res Part 72A(1):77–82. https://doi.org/10.1002/jbm.a.30208
36. Ju YY, Zhang MM, Zhao HY (2017) Poly(ε-caprolactone) with pendant natural peptides: an old polymeric biomaterial with new properties. Polym Chem 8(35):5415–5426. https://doi.org/10.1039/C7PY01012E
37. Chang PF, Xu S, Zhao BJ et al (2019) A design of shape memory networks of poly(ε-caprolactone)s via POSS-POSS interactions. Polym Adv Technol 30(3):713–725. https://doi.org/10.1002/pat.4509
38. Sinha R, Cámara-Torres M, Scopece P et al (2021) A hybrid additive manufacturing platform to create bulk and surface composition gradients on scaffolds for tissue regeneration. Nat Commun 12(1):500. https://doi.org/10.1038/s41467-020-20865-y
39. DiGirolamo CM, Stokes D, Colter D et al (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107:275–281. https://doi.org/10.1046/j.1365-2141.1999.01715.x
40. Beeren IAO, Dijkstra PJ, Massonnet P et al (2022) Controlling tosylation versus chlorination during end group modification of PCL. Eur Polym J 180:111576. https://doi.org/10.1016/j.eurpolymj.2022.111576
41. Riva R, Schmeits S, Stoffelbach F et al (2005) Combination of ring-opening polymerization and “click” chemistry towards functionalization of aliphatic polyesters. Chem Commun 42(42):5334–5336. https://doi.org/10.1039/b510282k
42. Lenoir S, Riva R, Lou X et al (2004) Ring-opening polymerization of α-chloro-ε-caprolactone and chemical modification of poly(α-chloro-ε-caprolactone) by atom transfer radical processes. Macromolecules 37(11):4055–4061. https://doi.org/10.1021/ma035003l
43. Detrembleur C, Mazza M, Halleux O et al (2000) Ring-opening polymerization of γ-bromo-ε-caprolactone: a novel route to functionalized aliphatic polyesters. Macromolecules 33(1):14–18. https://doi.org/10.1021/ma991083a
44. Colby RH, Fetters LJ, Graessley WW (1987) Melt viscosity-molecular weight relationship for linear polymers. Macromolecules 20(9):2226–2237. https://doi.org/10.1021/ma00175a030
45. Orozco F, Niyazov Z, Garnier T et al (2021) Maleimide self-reaction in furan/maleimide-based reversibly crosslinked polyketones: processing limitation or potential advantage? Molecules 26(8):2230. https://doi.org/10.3390/molecules26082230
46. Sánchez-Duffhues G, Hiepen C, Knaus P et al (2015) Bone morphogenetic protein signaling in bone homeostasis. Bone 80:43–59. https://doi.org/10.1016/J.BONE.2015.05.025
47. Rahman MS, Akhtar N, Jamil HM et al (2015) TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res 3:15005. https://doi.org/10.1038/boneres.2015.5
48. Yadin D, Knaus P, Mueller TD (2016) Structural insights into BMP receptors: specificity, activation and inhibition. Cytokine Growth Factor Rev 27:13–34. https://doi.org/10.1016/j.cytogfr.2015.11.005
49. Madl CM, Mehta M, Duda GN et al (2014) Presentation of BMP-2 mimicking peptides in 3D hydrogels directs cell fate commitment in osteoblasts and mesenchymal stem cells. Biomacromol 15(2):445–455. https://doi.org/10.1021/bm401726u
50. Kim MJ, Lee B, Yang K et al (2013) BMP-2 peptide-functionalized nanopatterned substrates for enhanced osteogenic differentiation of human mesenchymal stem cells. Biomaterials 34(30):7236–7246. https://doi.org/10.1016/j.biomaterials.2013.06.019
51. Xu YY, Luong D, Walker JM et al (2017) Modification of poly(propylene fumarate)-bioglass composites with peptide conjugates to enhance bioactivity. Biomacromol 18(10):3168–3177. https://doi.org/10.1021/acs.biomac.7b00828
52. Sun J, Huang YK, Zhao H et al (2022) Bio-clickable mussel-inspired peptides improve titanium-based material osseointegration synergistically with immunopolarization-regulation. Bioact Mater 9:1–14. https://doi.org/10.1016/j.bioactmat.2021.10.003
53. Kirsch T, Nickel J, Sebald W (2000) BMP-2 antagonists emerge from alterations in the low-affinity binding epitope for receptor BMPR-II. EMBO J 19(13):3314–3324. https://doi.org/10.1093/emboj/19.13.3314
54. Miyazono K, Kamiya Y, Morikawa M (2010) Bone morphogenetic protein receptors and signal transduction. J Biochem 147(1):35–51. https://doi.org/10.1093/jb/mvp148
55. Wu MR, Chen GQ, Li YP (2016) TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4:16009. https://doi.org/10.1038/boneres.2016.9
56. Narisawa S, Yadav MC, Millán JL (2013) In vivo overexpression of tissue-nonspecific alkaline phosphatase increases skeletal mineralization and affects the phosphorylation status of osteopontin. J Bone Miner Res 28(7):1587–1598. https://doi.org/10.1002/jbmr.1901
57. Huang ZN, Ren PG, Ma T et al (2010) Modulating osteogenesis of mesenchymal stem cells by modifying growth factor availability. Cytokine 51(3):305–310. https://doi.org/10.1016/j.cyto.2010.06.002
58. Neve A, Corrado A, Cantatore FP (2011) Osteoblast physiology in normal and pathological conditions. Cell Tissue Res 343(2):289–302. https://doi.org/10.1007/s00441-010-1086-1
59. Moore NM, Lin NJ, Gallant ND et al (2011) Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients. Acta Biomater 7(5):2091–2100. https://doi.org/10.1016/j.actbio.2011.01.019
60. Ma YR, Policastro GM, Li QY et al (2016) Concentration-dependent hMSC differentiation on orthogonal concentration gradients of GRGDS and BMP-2 peptides. Biomacromol 17(4):1486–1495. https://doi.org/10.1021/acs.biomac.6b00088
61. Bilem I, Chevallier P, Plawinski L et al (2016) RGD and BMP-2 mimetic peptide crosstalk enhances osteogenic commitment of human bone marrow stem cells. Acta Biomater 36:132–142. https://doi.org/10.1016/j.actbio.2016.03.032
62. Bilem I, Chevallier P, Plawinski L et al (2017) Interplay of geometric cues and RGD/BMP-2 crosstalk in directing stem cell fate. ACS Biomater Sci Eng 3(10):2514–2523. https://doi.org/10.1021/acsbiomaterials.7b00279
63. Data repository. https://doi.org/10.34894/5IVAVV
关于本刊
Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,2023年公布的最新影响因子为7.9,位列JCR的Q1区,14/96,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区。
初审迅速:初审快速退稿,不影响作者投其它期刊。
审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。
收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。
文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。
期刊主页:
http://www.springer.com/journal/42242
http://www.jzus.zju.edu.cn/ (国内可下载全文)
在线投稿地址:
http://www.editorialmanager.com/bdmj/default.aspx
入群交流
围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码