印度国家药物教育研究所Banerjee等 | 细胞之间的相互作用在3D体外微生理学疾病模型中的体细胞布局菌群-肠-脑轴上的影响

文摘   2024-06-25 21:36   浙江  

内容简介


本综述论文聚焦细胞之间的相互作用在3D体外微生理学疾病模型中的体细胞布局菌群-肠-脑轴上的影响。微生物群-肠道-脑轴(MGBA)已经成为大脑和肠道这两个主要器官系统之间双向沟通的关键前景。这两个器官系统之间的稳态使身体能够正常运作,而微生物失调已经有长期的疾病病因学证据。最常见的通信路径是微生物释放代谢物、可溶性神经递质和免疫细胞。然而,每条路径都与复杂的路径相互交织。随着体外模型的出现以及三维(3D)培养和跨膜技术的普及,工程化已经更容易地用于科学理解神经退行性疾病。本文简要回顾了肠道微生物群与大脑之间可能的通信路径,进一步阐述了三种主要疾病:自闭症谱系障碍、帕金森病和阿尔茨海默病,这些疾病在儿童和老年人中都很常见。这些疾病也会降低患者的生活质量。因此,借助体外模型的当前进展来更深入地理解这些疾病是至关重要的。实验室中对MGBA的重建使用了许多先进的分子技术和生物材料。球体和器官样结构与单层细胞相比提供了更逼真的细胞和组织结构图像。将它们与跨膜系统相结合,在允许它们之间传递物理和化学信号的同时可以隔离两个系统(上/下流道)。生物打印和微流控芯片等尖端技术提供了动态性,可能是体外模型的未来方向。


引用本文(点击最下方阅读原文可下载PDF)

Alam K, Nair L, Mukherjee S, et al., 2024. Cellular interplay to 3D in vitro microphysiological disease model: cell patterning microbiota–gut–brain axis. Bio-des Manuf 7(3):320–357. https://doi.org/10.1007/s42242-024-00282-6

文章导读



图1 菌群-肠-脑轴相关系统和通路


图2 菌群-肠-脑轴与神经退行性疾病


图3 细胞团与类器官神经元模型


图4 肠道上皮屏障的假设发展


图5 3D渗透模型机制和细胞相互作用



图6 菌群-肠-脑轴的3D体外建模,使用Transwell和微流控系统

参考文献

上下滑动以阅览

1. Martin CR, Osadchiy V, Kalani A et al (2018) The brain-gut-microbiome axis. CMGH 6(2):133–148. https://doi.org/10.1016/j.jcmgh.2018.04.003

2. Guo YX, Chen XF, Gong P et al (2023) The gut-organ-axis concept: advances the application of gut-on-chip technology. Int J Mol Sci 24(4):4089. https://doi.org/10.3390/ijms24044089

3. Nandwana V, Nandwana NK, Das Y et al (2022) The role of microbiome in brain development and neurodegenerative diseases. Molecules 27(11):3402. https://doi.org/10.3390/molecules27113402

4. Langille MGI, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821. https://doi.org/10.1038/nbt.2676

5. Eng A, Borenstein E (2018) Taxa-function robustness in microbial communities. Microbiome 6(1):45. https://doi.org/10.1186/s40168-018-0425-4

6. Cryan JF, O’Riordan KJ, Sandhu K et al (2020) The gut microbiome in neurological disorders. Lancet Neurol 19(2):179–194. https://doi.org/10.1016/S1474-4422(19)30356-4

7. Zhang HM, Chen YJ, Wang ZF et al (2022) Implications of gut microbiota in neurodegenerative diseases. Front Immunol 13:785644. https://doi.org/10.3389/fimmu.2022.785644

8. Martinez JE, Kahana DD, Ghuman S et al (2021) Unhealthy lifestyle and gut dysbiosis: a better understanding of the effects of poor diet and nicotine on the intestinal microbiome. Front Endocrinol 12:667066. https://doi.org/10.3389/fendo.2021.667066

9. Pizarroso NA, Fuciños P, Gonçalves C et al (2021) A review on the role of food-derived bioactive molecules and the microbiota–gut–brain axis in satiety regulation. Nutrients 13(2):632. https://doi.org/10.3390/nu13020632

10. Kho ZY, Lal SK (2018) The human gut microbiome: a potential controller of wellness and disease. Front Microbiol 9:1835. https://doi.org/10.3389/fmicb.2018.01835

11. Shang H, Zhao X, Zhang X (2023) Neurodegenerative diseases. In: Liu HS, Zhang XA (Eds.), Pediatric Neuroimaging: Cases and Illustrations. Springer, Singapore, p.211–214. https://doi.org/10.1007/978-981-16-7928-5_8

12. Chapter Google Scholar Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20(2):145–155. https://doi.org/10.1038/nn.4476

13. Heijtz RD, Wang SG, Anuar F et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108(7):3047–3052. https://doi.org/10.1073/pnas.1010529108

14. Wendeln AC, Degenhardt K, Kaurani L et al (2018) Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556(7701):332–338. https://doi.org/10.1038/s41586-018-0023-4

15. Gebrayel P, Nicco C, Al Khodor S et al (2022) Microbiota medicine: towards clinical revolution. J Transl Med 20(1):111. https://doi.org/10.1186/s12967-022-03296-9

16. Braniste V, Al-Asmakh M, Kowal C et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6(263):263ra158. https://doi.org/10.1126/scitranslmed.3009759

17. Adjei AA, Christian M, Ivy P (2009) Novel designs and end points for phase II clinical trials. Clin Cancer Res 15(6):1866–1872. https://doi.org/10.1158/1078-0432.CCR-08-2035

18. Shepherd A, Zhang TD, Zeleznikow-Johnston AM et al (2018) Transgenic mouse models as tools for understanding how increased cognitive and physical stimulation can improve cognition in Alzheimer’s disease. Brain Plast 4(1):127–150. https://doi.org/10.3233/bpl-180076

19. Götz J, Ittner LM, Schonrock N et al (2008) An update on the toxicity of Aβ in Alzheimer’s disease. Neuropsychiatr Dis Treat 4(6):1033–1042. https://doi.org/10.2147/ndt.s3016

20. Hargis KE, Blalock EM (2017) Transcriptional signatures of brain aging and Alzheimer’s disease: what are our rodent models telling us? Behav Brain Res 322(Pt B):311–328. https://doi.org/10.1016/j.bbr.2016.05.007

21. Ravussin Y, Koren O, Spor A et al (2012) Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity 20(4):738–747. https://doi.org/10.1038/oby.2011.111

22. Zhang CY, Franklin CL, Ericsson AC (2021) Consideration of gut microbiome in murine models of diseases. Microorganisms 9(5):1062. https://doi.org/10.3390/microorganisms9051062

23. Ambrosini YM, Borcherding D, Kanthasamy A et al (2019) The gut-brain axis in neurodegenerative diseases and relevance of the canine model: a review. Front Aging Neurosci 11:130. https://doi.org/10.3389/fnagi.2019.00130

24. Zhang L, Fitzloff JF, Engel LC et al (2001) Species difference in stereoselective involvement of CYP3A in the mono-N-dealkylation of disopyramide. Xenobiotica 31(2):73–83. https://doi.org/10.1080/00498250110037488

25. Ding JH, Jin Z, Yang XX et al (2020) Role of gut microbiota via the gut-liver-brain axis in digestive diseases. World J Gastroenterol 26(40):6141–6162. https://doi.org/10.3748/wjg.v26.i40.6141

26. Thergarajan G, Bhassu S (2022) The interaction of gut microbiota-brain axis in relation to human health with the use of animal models. In: Hoda El-Sayed (Ed.), Effect of Microbiota on Health and Disease. IntechOpen. https://doi.org/10.5772/intechopen.105866

27. Chapter Google Scholar Bertotto LB, Catron TR, Tal T (2020) Exploring interactions between xenobiotics, microbiota, and neurotoxicity in zebrafish. Neurotoxicology 76:235–244. https://doi.org/10.1016/j.neuro.2019.11.008

28. Landi M, Everitt J, Berridge B (2021) Bioethical, reproducibility, and translational challenges of animal models. ILAR J 62(1–2):60–65. https://doi.org/10.1093/ilar/ilaa027

29. Biagini F, Daddi C, Calvigioni M et al (2023) Designs and methodologies to recreate in vitro human gut microbiota models. Biodes Manuf 6(3):298–318. https://doi.org/10.1007/s42242-022-00210-6

30. Lechuga S, Braga-Neto MB, Naydenov NG et al (2023) Understanding disruption of the gut barrier during inflammation: should we abandon traditional epithelial cell lines and switch to intestinal organoids? Front Immunol 14:1108289. https://doi.org/10.3389/fimmu.2023.1108289

31. Pearce SC, Coia HG, Karl JP et al (2018) Intestinal in vitro and ex vivo models to study host-microbiome interactions and acute stressors. Front Physiol 9:1584. https://doi.org/10.3389/fphys.2018.01584

32. El Houari A, Ecale F, Mercier A et al (2022) Development of an in vitro model of human gut microbiota for screening the reciprocal interactions with antibiotics, frugs, and xenobiotics. Front Microbiol 13:828359. https://doi.org/10.3389/fmicb.2022.828359

33. Bermudez-Brito M, Muñoz-Quezada S, Gómez-Llorente C et al (2015) Lactobacillus paracasei CNCM I-4034 and its culture supernatant modulate Salmonella-induced inflammation in a novel transwell co-culture of human intestinal-like dendritic and Caco-2 cells. BMC Microbiol 15(1):79. https://doi.org/10.1186/s12866-015-0408-6

34. Rutsch A, Kantsjö JB, Ronchi F (2020) The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology. Front Immunol 11:604179. https://doi.org/10.3389/fimmu.2020.604179

35. Cryan JF, O’riordan KJ, Cowan CSM et al (2019) The microbiota-gut-brain axis. Physiol Rev 99(4):1877–2013. https://doi.org/10.1152/physrev.00018.2018

36. Mayer EA, Tillisch K, Gupta A (2015) Gut/brain axis and the microbiota. J Clin Invest 125(3):926–938. https://doi.org/10.1172/JCI76304

37. Wehrwein EA, Orer HS, Barman SM (2016) Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system. Compr Physiol 6(3):1239–1278. https://doi.org/10.1002/cphy.c150037

38. Mayer EA, Tillisch K (2011) The brain-gut axis in abdominal pain syndromes. Annu Rev Med 62(1):381–396. https://doi.org/10.1146/annurev-med-012309-103958

39. Kunze WA, Mao YK, Wang BX et al (2009) Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med 13(8b):2261–2270. https://doi.org/10.1111/j.1582-4934.2009.00686.x

40. McVey Neufeld KA, Mao YK, Bienenstock J et al (2013) The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol Motil 25(2):183-e88. https://doi.org/10.1111/nmo.12049

41. Burokas A, Moloney RD, Dinan TG et al (2015) Microbiota regulation of the mammalian gut-brain axis. Adv Appl Microbiol 91:1–62. https://doi.org/10.1016/bs.aambs.2015.02.001

42. Bravo JA, Forsythe P, Chew MV et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108(38):16050–16055. https://doi.org/10.1073/pnas.1102999108

43. Perez-Burgos A, Mao YK, Bienenstock J et al (2014) The gut-brain axis rewired: adding a functional vagal nicotinic “sensory synapse.” FASEB J 28(7):3064–3074. https://doi.org/10.1096/fj.13-245282

44. Chen S, Chen HS, Du QH et al (2020) Targeting myeloperoxidase (MPO) mediated oxidative stress and inflammation for reducing brain ischemia injury: potential application of natural compounds. Front Physiol 11:433. https://doi.org/10.3389/fphys.2020.00433

45. Bercik P, Park AJ, Sinclair D et al (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23(12):1132–1139. https://doi.org/10.1111/j.1365-2982.2011.01796.x

46. Ahmed H, Leyrolle Q, Koistinen V et al (2022) Microbiota-derived metabolites as drivers of gut–brain communication. Gut Microbes 14(1):2102878. https://doi.org/10.1080/19490976.2022.2102878

47. Bravo JA, Julio-Pieper M, Forsythe P et al (2012) Communication between gastrointestinal bacteria and the nervous system. Curr Opin Pharmacol 12(6):667–672. https://doi.org/10.1016/j.coph.2012.09.010

48. Brun P, Giron MC, Qesari M et al (2013) Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 145(6):1323–1333. https://doi.org/10.1053/j.gastro.2013.08.047

49. Barajon I, Serrao G, Arnaboldi F et al (2009) Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem 57(11):1013–1023. https://doi.org/10.1369/jhc.2009.953539

50. Mao YK, Kasper DL, Wang BX et al (2013) Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. Nat Commun 4(1):1465. https://doi.org/10.1038/ncomms2478

51. Lyte M (2014) Host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microbes 5(3):381–389. https://doi.org/10.4161/gmic.28682

52. Lyte M (1993) The role of microbial endocrinology in infectious disease. J Endocrinol 137(3):343–345. https://doi.org/10.1677/joe.0.1370343

53. Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693(Pt B):128–133. https://doi.org/10.1016/j.brainres.2018.03.015

54. Özoǧul F, Kuley E, Özoǧul Y et al (2012) The function of lactic acid bacteria on biogenic amines production by food-borne pathogens in arginine decarboxylase broth. Food Sci Technol Res 18(6):795–804. https://doi.org/10.3136/fstr.18.795

55. Yano JM, Yu K, Donaldson GP et al (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161(2):264–276. https://doi.org/10.1016/j.cell.2015.02.047

56. Waclawiková B, Codutti A, Alim K et al (2022) Gut microbiota-motility interregulation: insights from in vivo, ex vivo and in silico studies. Gut Microbes 14(1):1997296. https://doi.org/10.1080/19490976.2021.1997296

57. Hata T, Asano Y, Yoshihara K et al (2017) Regulation of gut luminal serotonin by commensal microbiota in mice. PLoS ONE 12(7):e0180745. https://doi.org/10.1371/journal.pone.0180745

58. Betari N, Sahlholm K, Morató X et al (2020) Inhibition of tryptophan hydroxylases and monoamine oxidase-A by the proton pump inhibitor, omeprazole—in vitro and in vivo investigations. Front Pharmacol 11:593416. https://doi.org/10.3389/fphar.2020.593416

59. Savitz J (2020) The kynurenine pathway: a finger in every pie. Mol Psychiatry 25(1):131–147. https://doi.org/10.1038/s41380-019-0414-4

60. Kennedy PJ, Cryan JF, Dinan TG et al (2017) Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 112(Pt B):399–412. https://doi.org/10.1016/j.neuropharm.2016.07.002

61. Cataldo PG, Villena J, Elean M et al (2020) Immunomodulatory properties of a γ-aminobutyric acid-enriched strawberry juice produced by levilactobacillus brevis CRL 2013. Front Microbiol 11:610016. https://doi.org/10.3389/fmicb.2020.610016

62. Matsumoto M, Kibe R, Ooga T et al (2012) Impact of intestinal microbiota on intestinal luminal metabolome. Sci Rep 2(1):233. https://doi.org/10.1038/srep00233

63. Pérez-Berezo T, Pujo J, Martin P et al (2017) Identification of an analgesic lipopeptide produced by the probiotic Escherichia coli strain Nissle. Nat Commun 8(1):1314. https://doi.org/10.1038/s41467-017-01403-9

64. Pokusaeva K, Johnson C, Luk B et al (2017) GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol Motil 29(1):e12904. https://doi.org/10.1111/nmo.12904

65. Dahlin M, Elfving Å, Ungerstedt U et al (2005) The ketogenic diet influences the levels of excitatory and inhibitory amino acids in the CSF in children with refractory epilepsy. Epilepsy Res 64(3):115–125. https://doi.org/10.1016/j.eplepsyres.2005.03.008

66. Stefano GB, Kream RM, Esch T (2023) Mobility coupled with motivation promotes survival: the evolution of cognition as an adaptive strategy. Biology 12(1):80. https://doi.org/10.3390/biology12010080

67. Freestone PP, Williams PH, Haigh RD et al (2002) Growth stimulation of intestinal commensal Escherichia coli by catecholamines: a possible contributory factor in trauma-induced sepsis. Shock 18(5):465–470. https://doi.org/10.1097/00024382-200211000-00014

68. O’Donnell PM, Aviles H, Lyte M et al (2006) Enhancement of in vitro growth of pathogenic bacteria by norepinephrine: importance of inoculum density and role of transferrin. Appl Environ Microbiol 72(7):5097–5099. https://doi.org/10.1128/AEM.00075-06

69. Lyte M, Villageliú DN, Crooker BA et al (2018) Symposium review: microbial endocrinology—why the integration of microbes, epithelial cells, and neurochemical signals in the digestive tract matters to ruminant health1. J Dairy Sci 101(6):5619–5628. https://doi.org/10.3168/jds.2017-13589

70. Curtis MM, Russell R, Moreira CG et al (2014) QseC inhibitors as an antivirulence approach for gram-negative pathogens. mBio 5(6):e02165. https://doi.org/10.1128/mBio.02165-14

71. Giaroni C, De Ponti F, Cosentino M et al (1999) Plasticity in the enteric nervous system. Gastroenterology 117(6):1438–1458. https://doi.org/10.1016/S0016-5085(99)70295-7

72. Asano Y, Hiramoto T, Nishino R et al (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 303(11):G1288–G1295. https://doi.org/10.1152/ajpgi.00341.2012

73. Gubert C, Gasparotto J, Morais LH et al (2022) Convergent pathways of the gut microbiota-brain axis and neurodegenerative disorders. Gastroenterol Rep 10:goac017. https://doi.org/10.1093/gastro/goac017

74. Erny D, De Angelis ALH, Jaitin D et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977. https://doi.org/10.1038/nn.4030

75. Colombo AV, Sadler RK, Llovera G et al (2021) Microbiota-derived short chain fatty acids modulate microglia and promote aβ plaque deposition. eLife 10:e59826. https://doi.org/10.7554/ELIFE.59826

76. El Aidy S, Dinan TG, Cryan JF (2015) Gut microbiota: the conductor in the orchestra of immune-neuroendocrine communication. Clin Ther 37(5):954–967. https://doi.org/10.1016/j.clinthera.2015.03.002

77. Marshall JS, Warrington R, Watson W et al (2018) An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol 14(Suppl 2):49. https://doi.org/10.1186/s13223-018-0278-1

78. Bilbo SD, Schwarz JM (2012) The immune system and developmental programming of brain and behavior. Front Neuroendocrinol 33(3):267–286. https://doi.org/10.1016/j.yfrne.2012.08.006

79. Deshmukh HS, Liu YH, Menkiti OR et al (2014) The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat Med 20(5):524–530. https://doi.org/10.1038/nm.3542

80. Konieczna P, Akdis CA, Quigley EMM et al (2012) Portrait of an immunoregulatory bifidobacterium. Gut Microbes 3(3):261–266. https://doi.org/10.4161/gmic.20358

81. Abt MC, Osborne LC, Monticelli LA et al (2012) Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37(1):158–170. https://doi.org/10.1016/j.immuni.2012.04.011

82. O’Mahony SM, Marchesi JR, Scully P et al (2009) Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 65(3):263–267. https://doi.org/10.1016/j.biopsych.2008.06.026

83. Foster JA, Rinaman L, Cryan JF (2017) Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress 7:124–136. https://doi.org/10.1016/j.ynstr.2017.03.001

84. Parada Venegas D, De la Fuente MK, Landskron G et al (2019) Corrigendum: short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:1486. https://doi.org/10.3389/fimmu.2019.00277

85. Sleeth ML, Thompson EL, Ford HE et al (2010) Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutr Res Rev 23(1):135–145. https://doi.org/10.1017/S0954422410000089

86. Maurer MH, Canis M, Kuschinsky W et al (2004) Correlation between local monocarboxylate transporter 1 (MCT1) and glucose transporter 1 (GLUT1) densities in the adult rat brain. Neurosci Lett 355(1):105–108. https://doi.org/10.1016/j.neulet.2003.10.056

87. Dalile B, Van Oudenhove L, Vervliet B et al (2019) The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol 16(8):461–478. https://doi.org/10.1038/s41575-019-0157-3

88. Chang PV, Hao LM, Offermanns S et al (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA 111(6):2247–2252. https://doi.org/10.1073/pnas.1322269111

89. Govindarajan N, Agis-Balboa RC, Walter J et al (2011) Sodium butyrate improves memory function in an alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J Alzheimer Dis 26(1):187–197. https://doi.org/10.3233/JAD-2011-110080

90. MacFabe DF (2012) Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb Ecol Health Dis 23(1):19260. https://doi.org/10.3402/mehd.v23i0.19260

91. MacFabe DF, Cain NE, Boon F et al (2011) Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder. Behav Brain Res 217(1):47–54. https://doi.org/10.1016/j.bbr.2010.10.005

92. Schroeder FA, Lin CL, Crusio WE et al (2007) Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry 62(1):55–64. https://doi.org/10.1016/j.biopsych.2006.06.036

93. Nogal A, Valdes AM, Menni C (2021) The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes 13(1):e1897212. https://doi.org/10.1080/19490976.2021.1897212

94. Silva YP, Bernardi A, Frozza RL (2020) The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol 11:25. https://doi.org/10.3389/fendo.2020.00025

95. Kang DW, Adams JB, Gregory AC et al (2017) Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5(1):10. https://doi.org/10.1186/s40168-016-0225-7

96. Góra B, Gofron Z, Grosiak M et al (2018) Toxin profile of fecal Clostridium perfringens strains isolated from children with autism spectrum disorders. Anaerobe 51:73–77. https://doi.org/10.1016/j.anaerobe.2018.03.005

97. Tabouy L, Getselter D, Ziv O et al (2018) Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain Behav Immun 73:310–319. https://doi.org/10.1016/j.bbi.2018.05.015

98. Sgritta M, Dooling SW, Buffington SA et al (2019) Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 101(2):246-259.e6. https://doi.org/10.1016/j.neuron.2018.11.018

99. Golubeva AV, Joyce SA, Moloney G et al (2017) Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine 24(C):166–178. https://doi.org/10.1016/j.ebiom.2017.09.020

100. Emanuele E, Orsi P, Boso M et al (2010) Low-grade endotoxemia in patients with severe autism. Neurosci Lett 471(3):162–165. https://doi.org/10.1016/j.neulet.2010.01.033

101. Finegold SM, Dowd SE, Gontcharova V et al (2010) Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16(4):444–453. https://doi.org/10.1016/j.anaerobe.2010.06.008

102. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712. https://doi.org/10.1038/nrn3346

103. Mertsalmi TH, Aho VTE, Pereira PAB et al (2017) More than constipation–bowel symptoms in Parkinson’s disease and their connection to gut microbiota. Eur J Neurol 24(11):1375–1383. https://doi.org/10.1111/ene.13398

104. Keshavarzian A, Green SJ, Engen PA et al (2015) Colonic bacterial composition in Parkinson’s disease. Movement Disord 30(10):1351–1360. https://doi.org/10.1002/mds.26307

105. Killinger BA, Madaj Z, Sikora JW et al (2018) The vermiform appendix impacts the risk of developing Parkinson’s disease. Sci Transl Med 10(465):eaar5280. https://doi.org/10.1126/scitranslmed.aar5280

106. Sampson TR, Debelius JW, Thron T et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6):1469-1480.e12. https://doi.org/10.1016/j.cell.2016.11.018

107. Bhattacharyya D, Mohite GM, Krishnamoorthy J et al (2019) Lipopolysaccharide from gut microbiota modulates α-synuclein aggregation and alters its biological function. ACS Chem Neurosci 10(5):2229–2236. https://doi.org/10.1021/acschemneuro.8b00733

108. Holmqvist S, Chutna O, Bousset L et al (2014) Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 128(6):805–820. https://doi.org/10.1007/s00401-014-1343-6

109. Scheperjans F, Aho V, Pereira PAB et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30(3):350–358. https://doi.org/10.1002/mds.26069

110. Hill-Burns EM, Debelius JW, Morton JT et al (2017) Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord 32(5):739–749. https://doi.org/10.1002/mds.26942

111. Huang YD, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148(6):1204–1222. https://doi.org/10.1016/j.cell.2012.02.040

112. Van Gerven N, Van der Verren SE, Reiter DM et al (2018) The role of functional amyloids in bacterial virulence. J Mol Biol 430(20):3657–3684. https://doi.org/10.1016/j.jmb.2018.07.010

113. Cattaneo A, Cattane N, Galluzzi S et al (2017) Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 49:60–68. https://doi.org/10.1016/j.neurobiolaging.2016.08.019

114. Aso E, Sánchez-Pla A, Vegas-Lozano E et al (2015) Cannabis-based medicine reduces multiple pathological processes in AβPP/PS1 mice. J Alzheimer Dis 43(3):977–991. https://doi.org/10.3233/JAD-141014

115. Vogt NM, Kerby RL, Dill-McFarland KA et al (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7(1):13537. https://doi.org/10.1038/s41598-017-13601-y

116. Radde R, Bolmont T, Kaeser SA et al (2006) Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 7(9):940–946. https://doi.org/10.1038/sj.embor.7400784

117. Harach T, Marungruang N, Duthilleul N et al (2017) Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 7(1):41802. https://doi.org/10.1038/srep41802

118. Kobayashi Y, Sugahara H, Shimada K et al (2017) Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci Rep 7(1):13510. https://doi.org/10.1038/s41598-017-13368-2

119. Ceppa FA, Izzo L, Sardelli L et al (2020) Human gut-microbiota interaction in neurodegenerative disorders and current engineered tools for its modeling. Front Cell Infect Microbiol 10:297. https://doi.org/10.3389/fcimb.2020.00297

120. Coluccio ML, Perozziello G, Malara N et al (2019) Microfluidic platforms for cell cultures and investigations. Microelectron Eng 208:14–28. https://doi.org/10.1016/j.mee.2019.01.004

121. Garcia-Corral M (2020) Towards an integrated microbiome-gut-brain axis-on-chip platform. MS Thesis, University of Twente. https://purl.utwente.nl/essays/85036

122. Dingle YTL, Boutin ME, Chirila AM et al (2015) Three-dimensional neural spheroid culture: an in vitro model for cortical studies. Tissue Eng Part C Methods 21(12):1274–1283. https://doi.org/10.1089/ten.tec.2015.0135

123. Boutin ME, Kramer LL, Livi LL et al (2018) A three-dimensional neural spheroid model for capillary-like network formation. J Neurosci Methods 299:55–63. https://doi.org/10.1016/j.jneumeth.2017.01.014

124. Park J, Lee BK, Jeong GS et al (2015) Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer’s disease. Lab Chip 15(1):141–150. https://doi.org/10.1039/c4lc00962b

125. Kim YH, Choi SH, D’Avanzo C et al (2015) A 3D human neural cell culture system for modeling Alzheimer’s disease. Nat Protoc 10(7):985–1006. https://doi.org/10.1038/nprot.2015.065

126. Simão D, Pinto C, Piersanti S et al (2015) Modeling human neural functionality in vitro: three-dimensional culture for dopaminergic differentiation. Tissue Eng Part A 21(3–4):654–668. https://doi.org/10.1089/ten.tea.2014.0079

127. Cho CF, Wolfe JM, Fadzen CM et al (2017) Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat Commun 8(1):15623. https://doi.org/10.1038/ncomms15623

128. Urich E, Patsch C, Aigner S et al (2013) Multicellular self-assembled spheroidal model of the blood brain barrier. Sci Rep 3(1):1500. https://doi.org/10.1038/srep01500

129. Zhuang P, Sun AX, An J et al (2018) 3D neural tissue models: from spheroids to bioprinting. Biomaterials 154:113–133. https://doi.org/10.1016/j.biomaterials.2017.10.002

130. Han H, Park Y, Choi Y et al (2022) A bioprinted tubular intestine model using a colon-specific extracellular matrix bioink. Adv Healthc Mater 11(2):e2101768. https://doi.org/10.1002/adhm.202101768

131. Santos JLD, Araujo CD, Rocha CAG et al (2023) Modeling autism spectrum disorders with Induced pluripotent stem cell-derived brain organoids. Biomolecules 13(2):260. https://doi.org/10.3390/biom13020260

132. Lee HK, Velazquez Sanchez C, Chen M et al (2016) Three dimensional human neuro-spheroid model of Alzheimer’s disease based on differentiated induced pluripotent stem cells. PLoS ONE 11(9):e0163072. https://doi.org/10.1371/journal.pone.0163072

133. Choi YJ, Park JS, Lee SH (2013) Size-controllable networked neurospheres as a 3D neuronal tissue model for Alzheimer’s disease studies. Biomaterials 34(12):2938–2946. https://doi.org/10.1016/j.biomaterials.2013.01.038

134. Birey F, Andersen J, Makinson CD et al (2017) Assembly of functionally integrated human forebrain spheroids. Nature 545(7652):54–59. https://doi.org/10.1038/nature22330

135. Modafferi S, Zhong XL, Kleensang A et al (2021) Gene–environment interactions in developmental neurotoxicity: a case study of synergy between chlorpyrifos and CHD8 knockout in human brainspheres. Environ Health Perspect 129(7):77001. https://doi.org/10.1289/EHP8580

136. Pamies D, Barreras P, Block K et al (2017) A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX Altern Anim Exp 34(3):362–376. https://doi.org/10.14573/altex.1609122

137. Wang P, Lin MY, Pedrosa E et al (2015) CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment. Mol Autism 6(1):55. https://doi.org/10.1186/s13229-015-0048-6

138. Adhya D, Chennell G, Crowe JA et al (2021) Application of airy beam light sheet microscopy to examine early neurodevelopmental structures in 3D hiPSC-derived human cortical spheroids. Mol Autism 12(1):4. https://doi.org/10.1186/s13229-021-00413-1

139. Hentschel V, Seufferlein T, Armacki M (2021) Intestinal organoids in coculture: redefining the boundaries of gut mucosa ex vivo modeling. Am J Physiol Gastrointest Liver Physiol 321(6):G693–G704. https://doi.org/10.1152/AJPGI.00043.2021

140. Chang Y, Kim J, Park H et al (2020) Modelling neurodegenerative diseases with 3D brain organoids. Biol Rev Cambridge Philos Soc 95(5):1497–1509. https://doi.org/10.1111/brv.12626

141. Lancaster MA, Renner M, Martin CA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379. https://doi.org/10.1038/nature12517

142. Jo J, Xiao YX, Sun AX et al (2016) Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19(2):248–257. https://doi.org/10.1016/j.stem.2016.07.005

143. McCracken KW, Catá EM, Crawford CM et al (2014) Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516(7531):400–404. https://doi.org/10.1038/nature13863

144. Williamson IA, Arnold JW, Samsa LA et al (2018) A high-throughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology. CMGH 6(3):301–319. https://doi.org/10.1016/j.jcmgh.2018.05.004

145. Noel G, Baetz NW, Staab JF et al (2017) A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Sci Rep 7(1):45270. https://doi.org/10.1038/srep45270

146. Dutta D, Heo I, Clevers H (2017) Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med 23(5):393–410. https://doi.org/10.1016/j.molmed.2017.02.007

147. Zhao ZX, Chen XY, Dowbaj AM et al (2022) Organoids. Nat Rev Methods Primers 2(1):94. https://doi.org/10.1038/s43586-022-00174-y

148. Grebenyuk S, Ranga A (2019) Engineering organoid vascularization. Front Bioeng Biotechnol 7:39. https://doi.org/10.3389/fbioe.2019.00039

149. Ormel PR, Vieira de Sá R, van Bodegraven EJ et al (2018) Microglia innately develop within cerebral organoids. Nat Commun 9(1):4167. https://doi.org/10.1038/s41467-018-06684-2

150. Raja WK, Mungenast AE, Lin YT et al (2016) Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer’s disease phenotypes. PLoS ONE 11(9):e0161969. https://doi.org/10.1371/journal.pone.0161969

151. Gonzalez C, Armijo E, Bravo-Alegria J et al (2018) Modeling amyloid beta and tau pathology in human cerebral organoids. Mol Psychiatry 23(12):2363–2374. https://doi.org/10.1038/s41380-018-0229-8

152. Bi FC, Yang XH, Cheng XY et al (2021) Optimization of cerebral organoids: a more qualified model for Alzheimer’s disease research. Transl Neurodegener 10(1):27. https://doi.org/10.1186/s40035-021-00252-3

153. Pérez MJ, Ivanyuk D, Panagiotakopoulou V et al (2021) Loss of function of the mitochondrial peptidase PITRM1 induces proteotoxic stress and Alzheimer’s disease-like pathology in human cerebral organoids. Mol Psychiatry 26(10):5733–5750. https://doi.org/10.1038/s41380-020-0807-4

154. Monzel AS, Smits LM, Hemmer K et al (2017) Derivation of human midbrain-specific organoids from neuroepithelial stem cells. Stem Cell Rep 8(5):1144–1154. https://doi.org/10.1016/j.stemcr.2017.03.010

155. Chlebanowska P, Tejchman A, Sułkowski M et al (2020) Use of 3D organoids as a model to study idiopathic form of Parkinson’s disease. Int J Mol Sci 21(3):694. https://doi.org/10.3390/ijms21030694

156. Kwak TH, Kang JH, Hali S et al (2020) Generation of homogeneous midbrain organoids with in vivo: like cellular composition facilitates neurotoxin-based Parkinson’s disease modeling. Stem Cells 38(6):727–740. https://doi.org/10.1002/stem.3163

157. Spence JR, Mayhew CN, Rankin SA et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470(7332):105–110. https://doi.org/10.1038/nature09691

158. Yamada S, Kanda Y (2019) Retinoic acid promotes barrier functions in human iPSC-derived intestinal epithelial monolayers. J Pharmacol Sci 140(4):337–344. https://doi.org/10.1016/j.jphs.2019.06.012

159. Hill DR, Huang S, Nagy MS et al (2017) Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium. eLife 6:e29132. https://doi.org/10.7554/eLife.29132

160. Workman MJ, Mahe MM, Trisno S et al (2017) Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med 23(1):49–59. https://doi.org/10.1038/nm.4233

161. Han H, Jang J (2022) Recent advances in biofabricated gut models to understand the gut-brain axis in neurological diseases. Front Med Technol 4:931411. https://doi.org/10.3389/fmedt.2022.931411

162. Ulluwishewa D, Anderson RC, Young W et al (2015) Live Faecalibacterium prausnitzii in an apical anaerobic model of the intestinal epithelial barrier. Cell Microbiol 17(2):226–240. https://doi.org/10.1111/cmi.12360

163. Hubatsch I, Ragnarsson EGE, Artursson P (2007) Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc 2(9):2111–2119. https://doi.org/10.1038/nprot.2007.303

164. Hall V, Bendtsen KMS (2023) Getting closer to modeling the gut-brain axis using induced pluripotent stem cells. Front Cell Dev Biol 11:1146062. https://doi.org/10.3389/fcell.2023.1146062

165. Hilgendorf C, Spahn-Langguth H, Regårdh CG et al (2000) Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J Pharm Sci 89(1):63–75. https://doi.org/10.1002/(SICI)1520-6017(200001)89:1%3c63::AID-JPS7%3e3.0.CO;2-6

166. Lozoya-Agullo I, Araújo F, González-Álvarez I et al (2017) Usefulness of Caco-2/HT29-MTX and Caco-2/HT29-MTX/Raji B coculture models to predict intestinal and colonic permeability compared to Caco-2 monoculture. Mol Pharm 14(4):1264–1270. https://doi.org/10.1021/acs.molpharmaceut.6b01165

167. Raimondi I, Izzo L, Tunesi M et al (2020) Organ-on-a-chip in vitro models of the brain and the blood-brain barrier and their value to study the microbiota-gut-brain axis in neurodegeneration. Front Bioeng Biotechnol 7:435. https://doi.org/10.3389/fbioe.2019.00435

168. Moysidou CM, Owens RM (2021) Advances in modelling the human microbiome-gut-brain axis in vitro. Biochem Soc Trans 49(1):187–201. https://doi.org/10.1042/BST20200338

169. Kim HJ, Huh D, Hamilton G et al (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12(12):2165–2174. https://doi.org/10.1039/c2lc40074j

170. Shin W, Kim HJ (2018) Intestinal barrier dysfunction orchestrates the onset of inflammatory host-microbiome cross-talk in a human gut inflammation-on-a-chip. Proc Natl Acad Sci USA 115(45):E10539–E10547. https://doi.org/10.1073/pnas.1810819115

171. Shin W, Wu A, Massidda MW et al (2019) A robust longitudinal co-culture of obligate anaerobic gut microbiome with human intestinal epithelium in an anoxic–oxic interface-on-a-chip. Front Bioeng Biotechnol 7:13. https://doi.org/10.3389/fbioe.2019.00013

172. Booth R, Kim H (2012) Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip 12(10):1784–1792. https://doi.org/10.1039/c2lc40094d

173. Griep LM, Wolbers F, De Wagenaar B et al (2013) BBB on CHIP: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices 15(1):145–150. https://doi.org/10.1007/s10544-012-9699-7

174. Raimondi MT, Albani D, Giordano C (2019) An organ-on-a-chip engineered platform to study the microbiota–gut–brain axis in neurodegeneration. Trends Mol Med 25(9):737–740. https://doi.org/10.1016/j.molmed.2019.07.006

175. Moysidou CM, Withers AM, Nisbet AJ et al (2022) Investigation of host–microbe–parasite interactions in an in vitro 3D model of the vertebrate gut. Adv Biol 6(8):e2200015. https://doi.org/10.1002/adbi.202200015

176. Vincentini O, Prota V, Cecchetti S et al (2022) Towards the standardization of intestinal in vitro advanced barrier model for nanoparticles uptake and crossing: the SiO2 case study. Cells 11(21):3357. https://doi.org/10.3390/cells11213357

177. Rubio APD, Martínez J, Palavecino M et al (2020) Transcytosis of bacillus subtilis extracellular vesicles through an in vitro intestinal epithelial cell model. Sci Rep 10(1):3120. https://doi.org/10.1038/s41598-020-60077-4

178. Deloid GM, Cao XQ, Molina RM et al (2019) Toxicological effects of ingested nanocellulose in in vitro intestinal epithelium and in vivo rat models. Environ Sci Nano 6(7):2105–2115. https://doi.org/10.1039/c9en00184k

179. di Vito R, Di Mezza A, Conte C et al (2023) The crosstalk between intestinal epithelial cells and mast cells is modulated by the probiotic supplementation in co-culture models. Int J Mol Sci 24(4):4157. https://doi.org/10.3390/ijms24044157

180. Zeuthen LH, Fink LN, Frokiaer H (2008) Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-β. Immunology 123(2):197–208. https://doi.org/10.1111/j.1365-2567.2007.02687.x

181. Le NPK, Altenburger MJ, Lamy E (2023) Development of an inflammation-triggered in vitro “leaky gut” model using caco-2/HT29-MTX-E12 combined with macrophage-like THP-1 cells or primary human-derived macrophages. Int J Mol Sci 24(8):7427. https://doi.org/10.3390/ijms24087427

182. McCright J, Sinha A, Maisel K (2022) Generating an in vitro gut model with physiologically relevant biophysical mucus properties. Cell Mol Bioeng 15(5):479–491. https://doi.org/10.1007/s12195-022-00740-0

183. Denaro M, Smeriglio A, De Francesco C et al (2020) In vitro intestinal transport and anti-inflammatory properties of ideain across Caco-2 transwell model. Fitoterapia 146:104723. https://doi.org/10.1016/j.fitote.2020.104723

184. Zeng J, Teng F, Weinstock GM et al (2004) Translocation of enterococcus faecalis strains across a monolayer of polarized human enterocyte-like T84 cells. J Clin Microbiol 42(3):1149–1154. https://doi.org/10.1128/JCM.42.3.1149-1154.2004

185. Krishnan M, Penrose HM, Shah NN et al (2016) VSL#3 probiotic stimulates T-cell protein tyrosine phosphatase-mediated recovery of IFN-γ-induced intestinal epithelial barrier defects. Inflamm Bowel Dis 22(12):2811–2823. https://doi.org/10.1097/MIB.0000000000000954

186. Haller D, Bode C, Hammes WP et al (2000) Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 47(1):79–87. https://doi.org/10.1136/gut.47.1.79

187. Dosh RH, Essa A, Jordan-Mahy N et al (2017) Use of hydrogel scaffolds to develop an in vitro 3D culture model of human intestinal epithelium. Acta Biomater 62:128–143. https://doi.org/10.1016/j.actbio.2017.08.035

188. Mulder D, Aarts E, Arias Vasquez A et al (2023) A systematic review exploring the association between the human gut microbiota and brain connectivity in health and disease. Mol Psychiatr 28:5037–5061.


关于本刊

Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。


初审迅速:初审快速退稿,不影响作者投其它期刊。

审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。

收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。

文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。


期刊主页:

http://www.springer.com/journal/42242

http://www.jzus.zju.edu.cn/ (国内可下载全文)

在线投稿地址:

http://www.editorialmanager.com/bdmj/default.aspx


入群交流

围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码

生物设计与制造BDM
论文导读、领域资讯
 最新文章