1. Gilbert MR, Wang MH, Aldape KD et al (2013) Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clinic Oncol 31(32):4085–4091. https://doi.org/10.1200/JCO.2013.49.6968
2. Wang MH, Dignam JJ, Won M et al (2015) Variation over time and interdependence between disease progression and death among patients with glioblastoma on RTOG 0525. Neuro-Oncology 17(7):999–1006. https://doi.org/10.1093/neuonc/nov009
3. Musah-Eroje A, Watson S (2019) Adaptive changes of glioblastoma cells following exposure to hypoxic (1% oxygen) tumour microenvironment. Int J Mol Sci 20(9):2091. https://doi.org/10.3390/ijms20092091
4. Hubert CG, Rivera M, Spangler LC et al (2016) A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res 76(8):2465–2477. https://doi.org/10.1158/0008-5472.CAN-15-2402
5. Wang C, Tong XM, Yang F (2014) Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Mol Pharm 11(7):2115–2125. https://doi.org/10.1021/mp5000828
6. Florczyk SJ, Wang K, Jana S et al (2013) Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM. Biomaterials 34(38):10143–10150. https://doi.org/10.1016/j.biomaterials.2013.09.034
7. Kimlin LC, Casagrande G, Virador VM (2013) In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog 52(3):167–182. https://doi.org/10.1002/mc.21844
8. Hutmacher DW, Loessner D, Rizzi S et al (2010) Can tissue engineering concepts advance tumor biology research? Trends Biotechnol 28(3):125–133. https://doi.org/10.1016/j.tibtech.2009.12.001
9. Das V, Bruzzese F, Konečný P et al (2015) Pathophysiologically relevant in vitro tumor models for drug screening. Drug Discov Today 20(7):848–855. https://doi.org/10.1016/j.drudis.2015.04.004
10. Cha J, Kim P (2017) Biomimetic strategies for the glioblastoma microenvironment. Front Mater 4:45. https://doi.org/10.3389/fmats.2017.00045
11. Musah-Eroje A, Watson S (2019) A novel 3D in vitro model of glioblastoma reveals resistance to temozolomide which was potentiated by hypoxia. J Neurooncol 142(2):231–240. https://doi.org/10.1007/s11060-019-03107-0
12. Fong ELS, Lamhamedi-Cherradi SE, Burdett E et al (2013) Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. Proc Natl Acad Sci USA 110(16):6500–6505. https://doi.org/10.1073/pnas.1221403110
13. Li M, Song X, Jin S et al (2021) 3D tumor model biofabrication. Bio-Des Manuf 4(3):526–540. https://doi.org/10.1007/s42242-021-00134-7
14. Thakor J, Ahadian S, Niakan A et al (2020) Engineered hydrogels for brain tumor culture and therapy. Bio-Des Manuf 3(3):203–226. https://doi.org/10.1007/s42242-020-00084-6
15. Gomez-Roman N, Stevenson K, Gilmour L et al (2017) A novel 3D human glioblastoma cell culture system for modeling drug and radiation responses. Neuro-Oncology 19(2):229–241. https://doi.org/10.1093/neuonc/now164
16. Lv DL, Yu SC, Ping YF et al (2016) A three-dimensional collagen scaffold cell culture system for screening anti-glioma therapeutics. Oncotarget 7(35):56904–56914. https://doi.org/10.18632/oncotarget.10885
17. Huijbers IJ, Iravani M, Popov S et al (2010) A role for fibrillar collagen deposition and the collagen internalization receptor Endo180 in glioma invasion. PLoS ONE 5(3):e9808. https://doi.org/10.1371/journal.pone.0009808
18. Leitinger B (2011) Transmembrane collagen receptors. Annu Rev Cell Dev Biol 27(1):265–290. https://doi.org/10.1146/annurev-cellbio-092910-154013
19. Gilkes DM, Semenza GL, Wirtz D (2014) Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer 14(6):430–439. https://doi.org/10.1038/nrc3726
20. Ma L, Li YT, Wu YT et al (2020) 3D bioprinted hyaluronic acid-based cell-laden scaffold for brain microenvironment simulation. Bio-Des Manuf 3(3):164–174. https://doi.org/10.1007/s42242-020-00076-6
21. Jiguet CJ, Baeza-Kallee N, Denicolaï E et al (2014) Ex vivo cultures of glioblastoma in three-dimensional hydrogel maintain the original tumor growth behavior and are suitable for preclinical drug and radiation sensitivity screening. Exp Cell Res 321(2):99–108. https://doi.org/10.1016/j.yexcr.2013.12.010
22. Thakor FK, Wan KW, Welsby PJ et al (2017) Pharmacological effects of asiatic acid in glioblastoma cells under hypoxia. Mol Cell Biochem 430(1–2):179–190. https://doi.org/10.1007/s11010-017-2965-5
23. Ahmed EM, Bandopadhyay G, Coyle B et al (2018) A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells. Cell Oncol 41(3):319–328. https://doi.org/10.1007/s13402-018-0374-8
24. Song Y, Zheng SH, Wang JZ et al (2017) Hypoxia-induced PLOD2 promotes proliferation, migration and invasion via PI3K/Akt signaling in glioma. Oncotarget 8(26):41947–41962. https://doi.org/10.18632/oncotarget.16710
25. Unwith S, Zhao HL, Hennah L et al (2015) The potential role of HIF on tumour progression and dissemination. Int J Cancer 136(11):2491–2503. https://doi.org/10.1002/ijc.28889
26. Liverani C, De Vita A, Minardi S et al (2019) A biomimetic 3D model of hypoxia-driven cancer progression. Sci Rep 9:12263. https://doi.org/10.1038/s41598-019-48701-4
27. Fang A, Hao ZY, Wang L et al (2019) In vitro model of the glial scar. Int J Bioprint 5(2):90–98. https://doi.org/10.18063/ijb.v5i2.235
28. Fang A, Li DC, Hao ZY et al (2019) Effects of astrocyte on neuronal outgrowth in a layered 3D structure. BioMed Eng OnLine 18(1):74. https://doi.org/10.1186/s12938-019-0694-6
29. Bai LG, Hao ZY, Wang S et al (2023) Biomimetic three-dimensional glioma model printed in vitro for the studies of glioma cells and neurons interactions. Int J Bioprint 9(4):1–14. https://doi.org/10.18063/ijb.715
30. Dai XL, Ma C, Lan Q et al (2016) 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication 8(4):045005. https://doi.org/10.1088/1758-5090/8/4/045005
31. Li PC, Zhou C, Xu LS et al (2013) Hypoxia enhances stemness of cancer stem cells in glioblastoma: an in vitro study. Int J Med Sci 10(4):399–407. https://doi.org/10.7150/ijms.5407
32. Richards R, Jenkinson MD, Haylock BJ et al (2016) Cell cycle progression in glioblastoma cells is unaffected by pathophysiological levels of hypoxia. PeerJ 3:e1755. https://doi.org/10.7717/peerj.1755
33. Longati P, Jia XH, Eimer J et al (2013) 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer 13(1):95. https://doi.org/10.1186/1471-2407-13-95
34. Lo Dico A, Martelli C, Diceglie C et al (2018) Ottobrini, hypoxia-inducible factor-1α activity as a switch for glioblastoma responsiveness to temozolomide. Front Oncol 8:249. https://doi.org/10.3389/fonc.2018.00249
35. Wang P, Lan C, Xiong SL et al (2017) HIF1α regulates single differentiated glioma cell dedifferentiation to stem-like cell phenotypes with high tumorigenic potential under hypoxia. Oncotarget 8(17):28074–28092. https://doi.org/10.18632/oncotarget.15888
36. Kawai Y, Kishimoto Y, Suzuki R et al (2016) Distribution and characteristics of slow-cycling cells in rat vocal folds. Laryngoscope 126(4):E164–E170. https://doi.org/10.1002/lary.25558
37. Taniguchi M, Yamamoto N, Nakagawa T et al (2012) Identification of tympanic border cells as slow-cycling cells in the cochlea. PLoS ONE 7(10):e48544. https://doi.org/10.1371/journal.pone.0048544
38. Stummer W, Pichlmeier U, Meinel T et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401. https://doi.org/10.1016/S1470-2045(06)70665-9
39. Sarkar S, Yong VW (2009) Inflammatory cytokine modulation of matrix metalloproteinase expression and invasiveness of glioma cells in a 3-dimensional collagen matrix. J Neurooncol 91(2):157–164. https://doi.org/10.1007/s11060-008-9695-1
40. Monteiro AR, Hill R, Pilkington GJ (2017) The role of hypoxia in glioblastoma invasion. Cells 6(4):45. https://doi.org/10.3390/cells6040045
41. Rape A, Ananthanarayanan B, Kumar S (2014) Engineering strategies to mimic the glioblastoma microenvironment. Adv Drug Deliv Rev 79–80:172–183. https://doi.org/10.1016/j.addr.2014.08.012
42. Gritsenko GP, Ilina O, Friedl P (2012) Interstitial guidance of cancer invasion. J Pathol 226(2):185–199. https://doi.org/10.1002/path.3031
43. Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147(5):992–1009. https://doi.org/10.1016/j.cell.2011.11.016
44. Baker BM, Chen CS (2012) Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J Cell Sci 125(13):3015–3024. https://doi.org/10.1242/jcs.079509
45. Bellail AC, Hunter SB, Brat DJ et al (2004) Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36(6):1046–1069. https://doi.org/10.1016/j.biocel.2004.01.013
46. Wiranowska M, Ladd S, Moscinski LC et al (2010) Modulation of hyaluronan production by CD44 positive glioma cells. Int J Cancer 127(3):532–542. https://doi.org/10.1002/ijc.25085
47. Watters JJ, Schartner JM, Badie B (2005) Microglia function in brain tumors. J Neurosci Res 81(3):447–455. https://doi.org/10.1002/jnr.20485
48. Hu B, Emdad L, Kegelman TP et al (2017) Astrocyte elevated gene-1 regulates β-catenin signaling to maintain glioma stem-like stemness and self-renewal. Mol Cancer Res 15(2):225–233. https://doi.org/10.1158/1541-7786.MCR-16-0239
49. Galarneau H, Villeneuve J, Gowing G et al (2007) Increased glioma growth in mice depleted of macrophages. Cancer Res 67(18):8874–8881. https://doi.org/10.1158/0008-5472.CAN-07-0177