西安交通大学李涤尘/王玲团队 | 利用体外三维胶质母细胞瘤模型研究氧浓度对细胞功能的影响

文摘   2024-07-03 16:12   浙江  

内容简介


本研究论文聚焦于脑胶质瘤体外三维模型构建以及缺氧环境对细胞功能影响规律的研究。缺氧是肿瘤微环境的典型特征,是影响细胞行为和肿瘤进展的最关键因素之一。然而,精确模拟天然脑肿瘤组织的肿瘤模型的缺乏阻碍了缺氧对肿瘤细胞进展和生长影响的研究。本研究报告了通过将胶质母细胞瘤细胞(U87)包裹在含有I型胶原的水凝胶中所构建的三维脑肿瘤模型。研究培养环境中不同浓度的氧(1%、7%和21%)对U87细胞形态、增殖、活力、细胞周期、凋亡率和迁移的影响。发现低氧(如1% O2)影响细胞形态,减慢细胞生长,降低细胞活力,增加细胞凋亡率。同时比较了二维和三维培养的差异。与二维培养的细胞相比,三维培养的细胞增殖较慢,细胞凋亡率及静息期(G0期)/间隙I期(G1期)细胞比例较高。此外,两种模型产生了明显不同的细胞形态。这些结果表明,所构建的三维模型能够有效地研究生物和化学因素对细胞形态和功能的影响,并且比二维培养系统更能代表肿瘤微环境。所建立的三维胶质母细胞瘤模型同样适用于其他药理学和病理学研究。


引用本文(点击最下方阅读原文可下载PDF)

Wang S, Yao S, Pei N, et al, 2024. Oxygen tension modulates cell function in an in vitro three-dimensional glioblastoma tumor model. Bio-des Manuf 7(3):307–319. https://doi.org/10.1007/s42242-024-00271-9

文章导读



图1 U87细胞在21% O2条件下2D和3D培养3天后的形态学比较。(a) 二维培养的细胞形态;(b) 胶原块中包埋细胞三维培养的细胞形态。红色轮廓表示纺锤形,黄色轮廓表示球形。比例尺:50 μm


图2 采用流式细胞术检测二维或三维培养条件下不同时间点U87细胞活力和凋亡率。(a) 细胞活力;(b) 细胞早期凋亡率;(c) 晚期凋亡率;(d) 总凋亡率


图3 氧浓度对三维培养U87细胞存活率的影响。三维样本在不同氧浓度下培养不同时间点(第1、3、5、7天)的死活染色图像。活细胞用绿色荧光标记染色,死细胞用红色荧光标记染色。比例尺:200 μm


图4 不同氧浓度(1%、7%、21%)下三维培养U87细胞凋亡率。(a) PI-Annexin V染色后流式细胞计数代表性图像;(b) 细胞早期凋亡率;(c) 晚期凋亡率;(d) 总凋亡率


图5 三维样本在不同氧浓度下培养第1、3、5、7天的代表性免疫荧光图像。U87细胞经GFAP染色后呈绿色。细胞核经DAPI复染后呈蓝色。增殖细胞核经Ki-67染色呈红色。比例尺:50 μm

参考文献

上下滑动以阅览

1. Gilbert MR, Wang MH, Aldape KD et al (2013) Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clinic Oncol 31(32):4085–4091. https://doi.org/10.1200/JCO.2013.49.6968

2. Wang MH, Dignam JJ, Won M et al (2015) Variation over time and interdependence between disease progression and death among patients with glioblastoma on RTOG 0525. Neuro-Oncology 17(7):999–1006. https://doi.org/10.1093/neuonc/nov009

3. Musah-Eroje A, Watson S (2019) Adaptive changes of glioblastoma cells following exposure to hypoxic (1% oxygen) tumour microenvironment. Int J Mol Sci 20(9):2091. https://doi.org/10.3390/ijms20092091

4. Hubert CG, Rivera M, Spangler LC et al (2016) A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res 76(8):2465–2477. https://doi.org/10.1158/0008-5472.CAN-15-2402

5. Wang C, Tong XM, Yang F (2014) Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Mol Pharm 11(7):2115–2125. https://doi.org/10.1021/mp5000828

6. Florczyk SJ, Wang K, Jana S et al (2013) Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM. Biomaterials 34(38):10143–10150. https://doi.org/10.1016/j.biomaterials.2013.09.034

7. Kimlin LC, Casagrande G, Virador VM (2013) In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog 52(3):167–182. https://doi.org/10.1002/mc.21844

8. Hutmacher DW, Loessner D, Rizzi S et al (2010) Can tissue engineering concepts advance tumor biology research? Trends Biotechnol 28(3):125–133. https://doi.org/10.1016/j.tibtech.2009.12.001

9. Das V, Bruzzese F, Konečný P et al (2015) Pathophysiologically relevant in vitro tumor models for drug screening. Drug Discov Today 20(7):848–855. https://doi.org/10.1016/j.drudis.2015.04.004

10. Cha J, Kim P (2017) Biomimetic strategies for the glioblastoma microenvironment. Front Mater 4:45. https://doi.org/10.3389/fmats.2017.00045

11. Musah-Eroje A, Watson S (2019) A novel 3D in vitro model of glioblastoma reveals resistance to temozolomide which was potentiated by hypoxia. J Neurooncol 142(2):231–240. https://doi.org/10.1007/s11060-019-03107-0

12. Fong ELS, Lamhamedi-Cherradi SE, Burdett E et al (2013) Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. Proc Natl Acad Sci USA 110(16):6500–6505. https://doi.org/10.1073/pnas.1221403110

13. Li M, Song X, Jin S et al (2021) 3D tumor model biofabrication. Bio-Des Manuf 4(3):526–540. https://doi.org/10.1007/s42242-021-00134-7

14. Thakor J, Ahadian S, Niakan A et al (2020) Engineered hydrogels for brain tumor culture and therapy. Bio-Des Manuf 3(3):203–226. https://doi.org/10.1007/s42242-020-00084-6

15. Gomez-Roman N, Stevenson K, Gilmour L et al (2017) A novel 3D human glioblastoma cell culture system for modeling drug and radiation responses. Neuro-Oncology 19(2):229–241. https://doi.org/10.1093/neuonc/now164

16. Lv DL, Yu SC, Ping YF et al (2016) A three-dimensional collagen scaffold cell culture system for screening anti-glioma therapeutics. Oncotarget 7(35):56904–56914. https://doi.org/10.18632/oncotarget.10885

17. Huijbers IJ, Iravani M, Popov S et al (2010) A role for fibrillar collagen deposition and the collagen internalization receptor Endo180 in glioma invasion. PLoS ONE 5(3):e9808. https://doi.org/10.1371/journal.pone.0009808

18. Leitinger B (2011) Transmembrane collagen receptors. Annu Rev Cell Dev Biol 27(1):265–290. https://doi.org/10.1146/annurev-cellbio-092910-154013

19. Gilkes DM, Semenza GL, Wirtz D (2014) Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer 14(6):430–439. https://doi.org/10.1038/nrc3726

20. Ma L, Li YT, Wu YT et al (2020) 3D bioprinted hyaluronic acid-based cell-laden scaffold for brain microenvironment simulation. Bio-Des Manuf 3(3):164–174. https://doi.org/10.1007/s42242-020-00076-6

21. Jiguet CJ, Baeza-Kallee N, Denicolaï E et al (2014) Ex vivo cultures of glioblastoma in three-dimensional hydrogel maintain the original tumor growth behavior and are suitable for preclinical drug and radiation sensitivity screening. Exp Cell Res 321(2):99–108. https://doi.org/10.1016/j.yexcr.2013.12.010

22. Thakor FK, Wan KW, Welsby PJ et al (2017) Pharmacological effects of asiatic acid in glioblastoma cells under hypoxia. Mol Cell Biochem 430(1–2):179–190. https://doi.org/10.1007/s11010-017-2965-5

23. Ahmed EM, Bandopadhyay G, Coyle B et al (2018) A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells. Cell Oncol 41(3):319–328. https://doi.org/10.1007/s13402-018-0374-8

24. Song Y, Zheng SH, Wang JZ et al (2017) Hypoxia-induced PLOD2 promotes proliferation, migration and invasion via PI3K/Akt signaling in glioma. Oncotarget 8(26):41947–41962. https://doi.org/10.18632/oncotarget.16710

25. Unwith S, Zhao HL, Hennah L et al (2015) The potential role of HIF on tumour progression and dissemination. Int J Cancer 136(11):2491–2503. https://doi.org/10.1002/ijc.28889

26. Liverani C, De Vita A, Minardi S et al (2019) A biomimetic 3D model of hypoxia-driven cancer progression. Sci Rep 9:12263. https://doi.org/10.1038/s41598-019-48701-4

27. Fang A, Hao ZY, Wang L et al (2019) In vitro model of the glial scar. Int J Bioprint 5(2):90–98. https://doi.org/10.18063/ijb.v5i2.235

28. Fang A, Li DC, Hao ZY et al (2019) Effects of astrocyte on neuronal outgrowth in a layered 3D structure. BioMed Eng OnLine 18(1):74. https://doi.org/10.1186/s12938-019-0694-6

29. Bai LG, Hao ZY, Wang S et al (2023) Biomimetic three-dimensional glioma model printed in vitro for the studies of glioma cells and neurons interactions. Int J Bioprint 9(4):1–14. https://doi.org/10.18063/ijb.715

30. Dai XL, Ma C, Lan Q et al (2016) 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication 8(4):045005. https://doi.org/10.1088/1758-5090/8/4/045005

31. Li PC, Zhou C, Xu LS et al (2013) Hypoxia enhances stemness of cancer stem cells in glioblastoma: an in vitro study. Int J Med Sci 10(4):399–407. https://doi.org/10.7150/ijms.5407

32. Richards R, Jenkinson MD, Haylock BJ et al (2016) Cell cycle progression in glioblastoma cells is unaffected by pathophysiological levels of hypoxia. PeerJ 3:e1755. https://doi.org/10.7717/peerj.1755

33. Longati P, Jia XH, Eimer J et al (2013) 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer 13(1):95. https://doi.org/10.1186/1471-2407-13-95

34. Lo Dico A, Martelli C, Diceglie C et al (2018) Ottobrini, hypoxia-inducible factor-1α activity as a switch for glioblastoma responsiveness to temozolomide. Front Oncol 8:249. https://doi.org/10.3389/fonc.2018.00249

35. Wang P, Lan C, Xiong SL et al (2017) HIF1α regulates single differentiated glioma cell dedifferentiation to stem-like cell phenotypes with high tumorigenic potential under hypoxia. Oncotarget 8(17):28074–28092. https://doi.org/10.18632/oncotarget.15888

36. Kawai Y, Kishimoto Y, Suzuki R et al (2016) Distribution and characteristics of slow-cycling cells in rat vocal folds. Laryngoscope 126(4):E164–E170. https://doi.org/10.1002/lary.25558

37. Taniguchi M, Yamamoto N, Nakagawa T et al (2012) Identification of tympanic border cells as slow-cycling cells in the cochlea. PLoS ONE 7(10):e48544. https://doi.org/10.1371/journal.pone.0048544

38. Stummer W, Pichlmeier U, Meinel T et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401. https://doi.org/10.1016/S1470-2045(06)70665-9

39. Sarkar S, Yong VW (2009) Inflammatory cytokine modulation of matrix metalloproteinase expression and invasiveness of glioma cells in a 3-dimensional collagen matrix. J Neurooncol 91(2):157–164. https://doi.org/10.1007/s11060-008-9695-1

40. Monteiro AR, Hill R, Pilkington GJ (2017) The role of hypoxia in glioblastoma invasion. Cells 6(4):45. https://doi.org/10.3390/cells6040045

41. Rape A, Ananthanarayanan B, Kumar S (2014) Engineering strategies to mimic the glioblastoma microenvironment. Adv Drug Deliv Rev 79–80:172–183. https://doi.org/10.1016/j.addr.2014.08.012

42. Gritsenko GP, Ilina O, Friedl P (2012) Interstitial guidance of cancer invasion. J Pathol 226(2):185–199. https://doi.org/10.1002/path.3031

43. Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147(5):992–1009. https://doi.org/10.1016/j.cell.2011.11.016

44. Baker BM, Chen CS (2012) Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J Cell Sci 125(13):3015–3024. https://doi.org/10.1242/jcs.079509

45. Bellail AC, Hunter SB, Brat DJ et al (2004) Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36(6):1046–1069. https://doi.org/10.1016/j.biocel.2004.01.013

46. Wiranowska M, Ladd S, Moscinski LC et al (2010) Modulation of hyaluronan production by CD44 positive glioma cells. Int J Cancer 127(3):532–542. https://doi.org/10.1002/ijc.25085

47. Watters JJ, Schartner JM, Badie B (2005) Microglia function in brain tumors. J Neurosci Res 81(3):447–455. https://doi.org/10.1002/jnr.20485

48. Hu B, Emdad L, Kegelman TP et al (2017) Astrocyte elevated gene-1 regulates β-catenin signaling to maintain glioma stem-like stemness and self-renewal. Mol Cancer Res 15(2):225–233. https://doi.org/10.1158/1541-7786.MCR-16-0239

49. Galarneau H, Villeneuve J, Gowing G et al (2007) Increased glioma growth in mice depleted of macrophages. Cancer Res 67(18):8874–8881. https://doi.org/10.1158/0008-5472.CAN-07-0177


关于本刊

Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。


初审迅速:初审快速退稿,不影响作者投其它期刊。

审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。

收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。

文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。


期刊主页:

http://www.springer.com/journal/42242

http://www.jzus.zju.edu.cn/ (国内可下载全文)

在线投稿地址:

http://www.editorialmanager.com/bdmj/default.aspx


入群交流

围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码

生物设计与制造BDM
论文导读、领域资讯
 最新文章