内容简介
本综述论文聚焦可拉伸摩擦纳米发电机用于可穿戴生物电子器件的最新进展。可穿戴生物电子器件具有实时监测人体健康、提供个性化健康服务以及与智能设备交互的潜力。然而,这些可穿戴生物电子器件依赖于传统的刚性电池,这些电池需要频繁充电或更换,且与皮肤的柔性不兼容,导致在人体健康监测和人机交互相关的复杂治疗任务中出现中断。可拉伸摩擦纳米发电机(TENG)是一种高效的能量收集技术,可将机械能转化为电能,从而为可穿戴生物电子设备提供有效的电能。本综述全面概述了可拉伸TENG在可穿戴生物电子器件中的最新进展。首先阐述了可拉伸TENG的工作机制,接着详细讨论了可拉伸TENG的制备方法,包括拉伸结构的设计和拉伸材料的选择。此外,介绍了基于可拉伸TENG的可穿戴生物电子器件在人体健康监测(包括身体运动、脉搏和呼吸)和人机交互(如触控面板、机器控制和虚拟现实)中的应用。最后,详细讨论了基于可拉伸TENG的可穿戴生物电子器件面临的挑战和发展趋势。
引用本文(点击最下方阅读原文可下载PDF)
Wang Y, Zhu P, Sun Y, et al., 2024. Recent advances in stretchable triboelectric nanogenerators for use in wearable bioelectronic devices. Bio-des Manuf 7(4):566–590. https://doi.org/10.1007/s42242-024-00284-4
文章导读
图1 可拉伸摩擦纳米发电机用于可穿戴生物电子器件的概述图
图2 摩擦纳米发电机的四种工作机理
图3 基于编织结构设计的可拉伸摩擦纳米发电机
图4 基于液态金属材料的可拉伸摩擦纳米发电机
图5 可拉伸摩擦纳米发电机用于人体脉搏监测
参考文献
上下滑动以阅览
1. Xu S, Jayaraman A, Rogers JA (2019) Skin sensors are the future of health care. Nature 571(7765):319–321. https://doi.org/10.1038/d41586-019-02143-0
2. Sadri B, Gao W (2023) Fibrous wearable and implantable bioelectronics. Appl Phys Rev 10(3):031303. https://doi.org/10.1063/5.0152744
3. Jing YF, Wang AH, Li JL et al (2022) Preparation of conductive and transparent dipeptide hydrogels for wearable biosensor. Bio-Des Manuf 5(1):153–162. https://doi.org/10.1007/s42242-021-00143-6
4. Chen LR, Chang XH, Wang H et al (2022) Stretchable and transparent multimodal electronic-skin sensors in detecting strain, temperature, and humidity. Nano Energy 96:107077. https://doi.org/10.1016/j.nanoen.2022.107077
5. Liu DJ, Zhu PC, Zhang FK et al (2023) Intrinsically stretchable polymer semiconductor based electronic skin for multiple perceptions of force, temperature, and visible light. Nano Res 16(1):1196–1204. https://doi.org/10.1007/s12274-022-4622-x
6. Sim D, Brothers MC, Slocik JM et al (2022) Biomarkers and detection platforms for human health and performance monitoring: a review. Adv Sci 9(7):e2104426. https://doi.org/10.1002/advs.202104426
7. Zhu PC, Mu SR, Huang WH et al (2024) Soft multifunctional neurological electronic skin through intrinsically stretchable synaptic transistor. Nano Res (Early Access). https://doi.org/10.1007/s12274-024-6566-8
8. Lin MZ, Zheng ZJ, Yang L et al (2022) A high-performance, sensitive, wearable multifunctional sensor based on rubber/CNT for human motion and skin temperature detection. Adv Mater 34(1):e2107309. https://doi.org/10.1002/adma.202107309
9. Zhu PC, Zhang BS, Wang HY et al (2022) 3D printed triboelectric nanogenerator as self-powered human–machine interactive sensor for breathing-based language expression. Nano Res 15(8):7460–7467. https://doi.org/10.1007/s12274-022-4339-x
10. Chen SW, Cao ZK, Zhou K et al (2023) Screen printing and laser-induced flexible sensors for the simultaneous sensitive detection of uric acid, tyrosine, and ascorbic acid in sweat. Analyst 148(13):2965–2974. https://doi.org/10.1039/d3an00591g
11. Heng WZ, Yang G, Kim WS et al (2022) Emerging wearable flexible sensors for sweat analysis. Bio-Des Manuf 5(1):64–84. https://doi.org/10.1007/s42242-021-00171-2
12. Ribeiro AH, Ribeiro MH, Paixao GMM et al (2020) Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat Commun 11(1):1760. https://doi.org/10.1038/s41467-020-15432-4
13. Jin XF, Li GH, Xu TL et al (2022) Fully integrated flexible biosensor for wearable continuous glucose monitoring. Biosens Bioelectron 196:113760. https://doi.org/10.1016/j.bios.2021.113760
14. Babu A, Aazem I, Walden R et al (2023) Electrospun nanofiber based TENGs for wearable electronics and self-powered sensing. Chem Eng J 452:139060. https://doi.org/10.1016/j.cej.2022.139060
15. Zhou HL, Zhang Y, Qiu Y et al (2020) Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosens Bioelectron 168:112569. https://doi.org/10.1016/j.bios.2020.112569
16. Jia YH, Jiang QL, Sun HD et al (2021) Wearable thermoelectric materials and devices for self-powered electronic systems. Adv Mater 33(42):e2102990. https://doi.org/10.1002/adma.202102990
17. Wang A, Wang YF, Zhang B et al (2021) Hydrogen-bonded network enables semi-interpenetrating ionic conductive hydrogels with high stretchability and excellent fatigue resistance for capacitive/resistive bimodal sensors. Chem Eng J 411:128506. https://doi.org/10.1016/j.cej.2021.128506
18. Ruth SRA, Feig VR, Tran H et al (2020) Microengineering pressure sensor active layers for improved performance. Adv Funct Mater 30(39):2003491. https://doi.org/10.1002/adfm.202003491
19. Wang M, Zhang H, Wu H et al (2023) Bioinspired flexible piezoresistive sensor for high-sensitivity detection of broad pressure range. Bio-Des Manuf 6(3):243–254. https://doi.org/10.1007/s42242-022-00220-4
20. Han CY, Wang JX, Zhang S et al (2023) Over 19% efficiency organic solar cells by regulating multidimensional intermolecular interactions. Adv Mater 35(10):e2208986. https://doi.org/10.1002/adma.202208986
21. Alham MH, Gad MF, Ibrahim DK (2023) Potential of wind energy and economic assessment in Egypt considering optimal hub height by equilibrium optimizer. Ain Shams Eng J 14(1):101816. https://doi.org/10.1016/j.asej.2022.101816
22. Mu XJ, Zhou JH, Wang PF et al (2022) A robust starch–polyacrylamide hydrogel with scavenging energy harvesting capacity for efficient solar thermoelectricity–freshwater cogeneration. Energy Environ Sci 15(8):3388–3399. https://doi.org/10.1039/d2ee01394k
23. Sharma S, Kiran R, Azad P et al (2022) A review of piezoelectric energy harvesting tiles: available designs and future perspective. Energy Convers Manag 254:115272. https://doi.org/10.1016/j.enconman.2022.115272
24. Kim DW, Lee JH, Kim JK et al (2020) Material aspects of triboelectric energy generation and sensors. NPG Asia Mater 12(1):6. https://doi.org/10.1038/s41427-019-0176-0
25. Walden R, Aazem I, Babu A et al (2023) Textile-triboelectric nanogenerators (T-TENGs) for wearable energy harvesting devices. Chem Eng J 451:138741. https://doi.org/10.1016/j.cej.2022.138741
26. Zhou YK, Shen ML, Cui X et al (2021) Triboelectric nanogenerator based self-powered sensor for artificial intelligence. Nano Energy 84:105887. https://doi.org/10.1016/j.nanoen.2021.105887
27. Qin Y, Zhang WL, Liu YH et al (2023) Cellulosic gel-based triboelectric nanogenerators for energy harvesting and emerging applications. Nano Energy 106:108079. https://doi.org/10.1016/j.nanoen.2022.108079
28. Wang TR, Shen YC, Chen LJ et al (2023) Large-scale production of the 3D warp knitted terry fabric triboelectric nanogenerators for motion monitoring and energy harvesting. Nano Energy 109:108309. https://doi.org/10.1016/j.nanoen.2023.108309
29. Cong ZF, Guo WB, Guo ZH et al (2020) Stretchable coplanar self-charging power textile with resist-dyeing triboelectric nanogenerators and micro-supercapacitors. ACS Nano 14(5):5590–5599. https://doi.org/10.1021/acsnano.9b09994
30. Guo C, Xu L, Su Y et al (2022) Stretchable nanogenerators for scavenging mechanical energy. Nano Res 16(9):11682–11697. https://doi.org/10.1007/s12274-022-5238-x
31. Haghayegh M, Cao R, Zabihi F et al (2022) Recent advances in stretchable, wearable and bio-compatible triboelectric nanogenerators. J Mater Chem C 10(32):11439–11471. https://doi.org/10.1039/d2tc01931k
32. Lu CW, Wang XY, Shen Y et al (2022) Liquid-free, anti-freezing, solvent-resistant, cellulose-derived ionic conductive elastomer for stretchable wearable electronics and triboelectric nanogenerators. Adv Funct Mater 32(46):2207714. https://doi.org/10.1002/adfm.202207714
33. Leng ZW, Zhu PC, Wang XC et al (2023) Sebum-membrane-inspired protein-based bioprotonic hydrogel for artificial skin and human–machine merging interface. Adv Funct Mater 33(13):2211056. https://doi.org/10.1002/adfm.202211056
34. Cai YW, Wang GG, Mei YC et al (2022) Self-healable, super-stretchable and shape-adaptive triboelectric nanogenerator based on double cross-linked PDMS for electronic skins. Nano Energy 102:107683. https://doi.org/10.1016/j.nanoen.2022.107683
35. Wang Z, Liu ZR, Zhao GR et al (2022) Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors. ACS Nano 16(1):1661–1670. https://doi.org/10.1021/acsnano.1c10678
36. Sun W, Xue JT, Tan PC et al (2023) A self-powered multifunctional bracelet for pulse monitoring and personal rescue. Biosensors 13(5):552. https://doi.org/10.3390/bios13050552
37. Li YZ, Liu CR, Zou HY et al (2023) Integrated wearable smart sensor system for real-time multi-parameter respiration health monitoring. Cell Rep Phys Sci 4(1):101191. https://doi.org/10.1016/j.xcrp.2022.101191
38. Pu XJ, Tang Q, Chen WS et al (2020) Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing. Nano Energy 76:105047. https://doi.org/10.1016/j.nanoen.2020.105047
39. Zhou H, Huang W, Xiao Z et al (2022) Deep-learning-assisted noncontact gesture-recognition system for touchless human–machine interfaces. Adv Funct Mater 32(49):2208271. https://doi.org/10.1002/adfm.202208271
40. Sun ZD, Zhu ML, Shan XC et al (2022) Augmented tactile-perception and haptic-feedback rings as human–machine interfaces aiming for immersive interactions. Nat Commun 13(1):5224. https://doi.org/10.1038/s41467-022-32745-8
41. Ganesh RS, Yoon HJ, Kim SW (2020) Recent trends of biocompatible triboelectric nanogenerators toward self-powered e-skin. EcoMat 2(4):e12065. https://doi.org/10.1002/eom2.12065
42. Che ZY, O’Donovan S, Xiao X et al (2023) Implantable triboelectric nanogenerators for self-powered cardiovascular healthcare. Small 19(51):e2207600. https://doi.org/10.1002/smll.202207600
43. Mayer M, Xiao X, Yin JY et al (2022) Advances in bioinspired triboelectric nanogenerators. Adv Electron Mater 8(12):2200782. https://doi.org/10.1002/aelm.202200782
44. Li CY, Wang P, Zhang D (2023) Self-healable, stretchable triboelectric nanogenerators based on flexible polyimide for energy harvesting and self-powered sensors. Nano Energy 109:108285. https://doi.org/10.1016/j.nanoen.2023.108285
45. Khorsand M, Tavakoli J, Kamanya K et al (2019) Simulation of high-output and lightweight sliding-mode triboelectric nanogenerators. Nano Energy 66:104115. https://doi.org/10.1016/j.nanoen.2019.104115
46. Zhou T, Zhang C, Han CB et al (2014) Woven structured triboelectric nanogenerator for wearable devices. ACS Appl Mater Interfaces 6(16):14695–14701. https://doi.org/10.1021/am504110u
47. Jiang Y, Dong K, Li X et al (2020) Stretchable, washable, and ultrathin triboelectric nanogenerators as skin-like highly sensitive self-powered haptic sensors. Adv Funct Mater 31(1):225584. https://doi.org/10.1002/adfm.202005584
48. Xia KQ, Liu JZ, Li WT et al (2023) A self-powered bridge health monitoring system driven by elastic origami triboelectric nanogenerator. Nano Energy 105:107974. https://doi.org/10.1016/j.nanoen.2022.107974
49. Kim MY, Park H, Lee MH et al (2023) Stretching-insensitive stretchable and biocompatible triboelectric nanogenerators using plasticized PVC gel and graphene electrode for body-integrated touch sensor. Nano Energy 107:108159. https://doi.org/10.1016/j.nanoen.2022.108159
50. Li X, Zhu PC, Zhang SC et al (2022) A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional e-skin. ACS Nano 16(4):5909–5919. https://doi.org/10.1021/acsnano.1c11096
51. Kwak SS, Kim H, Seung W et al (2017) Fully stretchable textile triboelectric nanogenerator with knitted fabric structures. ACS Nano 11(11):10733–10741. https://doi.org/10.1021/acsnano.7b05203
52. Huang JJ, Wang SL, Zhao XK et al (2023) Fabrication of a textile-based triboelectric nanogenerator toward high-efficiency energy harvesting and material recognition. Mater Horiz 10(9):3840–3853. https://doi.org/10.1039/d3mh00618b
53. Wang JX, He JH, Ma LL et al (2021) A humidity-resistant, stretchable and wearable textile-based triboelectric nanogenerator for mechanical energy harvesting and multifunctional self-powered haptic sensing. Chem Eng J 423(1):130200. https://doi.org/10.1016/j.cej.2021.130200
54. Rezaei J, Nikfarjam A (2021) Rib stitch knitted extremely stretchable and washable textile triboelectric nanogenerator. Adv Mater Technol 6(4):2000983. https://doi.org/10.1002/admt.202000983
55. Xie LJ, Chen XP, Wen Z et al (2019) Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano Micro Lett 11(1):39. https://doi.org/10.1007/s40820-019-0271-3
56. Ning C, Cheng RW, Jiang Y et al (2022) Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring. ACS Nano 16(2):2811–2821. https://doi.org/10.1021/acsnano.1c09792
57. Cho E, Kim KN, Yong H et al (2022) Highly transparent and water-repellent hierarchical-wrinkled-architecture triboelectric nanogenerator with ultrathin plasma-polymer-fluorocarbon film for artificial triboelectric skin. Nano Energy 103:107785. https://doi.org/10.1016/j.nanoen.2022.107785
58. Wu W, Peng X, Xiao Y et al (2023) Stretchable conductive-ink-based wrinkled triboelectric nanogenerators for mechanical energy harvesting and self-powered signal sensing. Mater Today Chem 27:101286. https://doi.org/10.1016/j.mtchem.2022.101286
59. Guo XK, Yang F, Sun XL et al (2022) Anti-freezing self-adhesive self-healing degradable touch panel with ultra-stretchable performance based on transparent triboelectric nanogenerators. Adv Funct Mater 32(31):2201230. https://doi.org/10.1002/adfm.202201230
60. Zhao JW, Wang YJ, Wang B et al (2023) A flexible and stretchable triboelectric nanogenerator based on a medical conductive hydrogel for biomechanical energy harvesting and electronic switches. Nanoscale 15(14):6812–6821. https://doi.org/10.1039/d2nr05706a
61. Li KS, Zhang DZ, Zhang H et al (2023) Triboelectric nanogenerators based on super-stretchable conductive hydrogels with the assistance of deep-learning for handwriting recognition. ACS Appl Mater Interfaces 15(27):32993–33002. https://doi.org/10.1021/acsami.3c06597
62. Liu YM, Wong TH, Huang XC et al (2022) Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing. Nano Energy 99:107442. https://doi.org/10.1016/j.nanoen.2022.107442
63. Jiang JX, Guan QB, Liu YN et al (2021) Abrasion and fracture self-healable triboelectric nanogenerator with ultrahigh stretchability and long-term durability. Adv Funct Mater 31(47):2105380. https://doi.org/10.1002/adfm.202105380
64. Liu JX, Liu GX, Guo ZH et al (2023) Electret elastomer-based stretchable triboelectric nanogenerators with autonomously managed power supplies for self-charging systems. Chem Eng J 462:142167. https://doi.org/10.1016/j.cej.2023.142167
65. Yang YQ, Sun N, Wen Z et al (2018) Liquid–metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 12(2):2027–2034. https://doi.org/10.1021/acsnano.8b00147
66. Xiang SX, Liu DJ, Jiang CC et al (2021) Liquid–metal-based dynamic thermoregulating and self-powered electronic skin. Adv Funct Mater 31(26):2100940. https://doi.org/10.1002/adfm.202100940
67. Wang H, Rao ZC, Liu YQ et al (2023) A highly stretchable triboelectric nanogenerator with both stretch-insensitive sensing and stretch-sensitive sensing. Nano Energy 107:108170. https://doi.org/10.1016/j.nanoen.2023.108170
68. Chi YD, Li YB, Zhao Y et al (2022) Bistable and multistable actuators for soft robots: structures, materials, and functionalities. Adv Mater 34(19):e2110384. https://doi.org/10.1002/adma.202110384
69. Li JR, Xie ZX, Wang ZH et al (2023) A triboelectric gait sensor system for human activity recognition and user identification. Nano Energy 112:108473. https://doi.org/10.1016/j.nanoen.2023.108473
70. Niu SM, Wang XF, Yi F et al (2015) A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat Commun 6(1):8975. https://doi.org/10.1038/ncomms9975
71. Zhang H, Yang CW, Yu Y et al (2020) Origami-tessellation-based triboelectric nanogenerator for energy harvesting with application in road pavement. Nano Energy 78:105177. https://doi.org/10.1016/j.nanoen.2020.105177
72. Pang YF, Zhu XY, Yu Y et al (2022) Waterbomb-origami inspired triboelectric nanogenerator for smart pavement-integrated traffic monitoring. Nano Res 15(6):5450–5460. https://doi.org/10.1007/s12274-022-4152-6
73. Dong CQ, Leber A, Yan D et al (2022) 3D stretchable and self-encapsulated multimaterial triboelectric fibers. Sci Adv 8(45):eabo0869. https://doi.org/10.1126/sciadv.abo0869
74. Fan WJ, He Q, Meng KY et al (2020) Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci Adv 6(11):eaay2840. https://doi.org/10.1126/sciadv.aay2840
75. Zhou ZH, Chen K, Li XS et al (2020) Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron 3(9):571–578. https://doi.org/10.1038/s41928-020-0428-6
76. Dong K, Peng X, An J et al (2020) Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat Commun 11(1):2868. https://doi.org/10.1038/s41467-020-16642-6
77. Dong K, Wu ZY, Deng JA et al (2018) A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv Mater 30(43):e1804944. https://doi.org/10.1002/adma.201804944
78. Wu YP, Qiu JH, Zhou SP et al (2018) A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting. Appl Energy 231:600–614. https://doi.org/10.1016/j.apenergy.2018.09.082
79. He JH, Xie ZQ, Yao KM et al (2021) Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics. Nano Energy 81:105590. https://doi.org/10.1016/j.nanoen.2020.105590
80. Qi JB, Wang AC, Yang WF et al (2020) Hydrogel-based hierarchically wrinkled stretchable nanofibrous membrane for high performance wearable triboelectric nanogenerator. Nano Energy 67:104206. https://doi.org/10.1016/j.nanoen.2019.104206
81. Xiao Y, Xu Y, Qu CM et al (2021) Micro-crack assisted wrinkled PEDOT:PSS to detect and distinguish tensile strain and pressure based on a triboelectric nanogenerator. Adv Mater Technol 7(1):2100423. https://doi.org/10.1002/admt.202100423
82. Ahn J, Zhao ZJ, Choi J et al (2021) Morphology-controllable wrinkled hierarchical structure and its application to superhydrophobic triboelectric nanogenerator. Nano Energy 85:105978. https://doi.org/10.1016/j.nanoen.2021.105978
83. Qin Z, Yin YY, Zhang WZ et al (2019) Wearable and stretchable triboelectric nanogenerator based on crumpled nanofibrous membranes. ACS Appl Mater Interfaces 11(13):12452–12459. https://doi.org/10.1021/acsami.8b21487
84. Wen Z, Yang YQ, Sun N et al (2018) A wrinkled PEDOT:PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors. Adv Funct Mater 28(37):1803684. https://doi.org/10.1002/adfm.201803684
85. Salauddin M, Rana SMS, Sharifuzzaman M et al (2023) Highly electronegative V2CTx/silicone nanocomposite-based serpentine triboelectric nanogenerator for wearable self-powered sensors and sign language interpretation. Adv Energy Mater 13(10):2203812. https://doi.org/10.1002/aenm.202203812
86. Ren J, Gao CJ, Liu QX et al (2021) Arc-shaped triboelectric nanogenerator based on rolling structure for harvesting low-frequency water wave energy. Mater Today Chem 6(11):2100359. https://doi.org/10.1002/admt.202100359
87. Mi HY, Jing X, Cai ZY et al (2018) Highly porous composite aerogel based triboelectric nanogenerators for high performance energy generation and versatile self-powered sensing. Nanoscale 10(48):23131–23140. https://doi.org/10.1039/c8nr05872e
88. Wu YX, Li YS, Zou Y et al (2022) A multi-mode triboelectric nanogenerator for energy harvesting and biomedical monitoring. Nano Energy 92:106715. https://doi.org/10.1016/j.nanoen.2021.106715
89. Wang LY, Liu YM, Liu Q et al (2020) A metal-electrode-free, fully integrated, soft triboelectric sensor array for self-powered tactile sensing. Microsyst Nanoeng 6:59. https://doi.org/10.1038/s41378-020-0154-2
90. Lee Y, Cha SH, Kim YW et al (2018) Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nat Commun 9(1):1804. https://doi.org/10.1038/s41467-018-03954-x
91. Zhang PP, Chen YH, Guo ZH et al (2020) Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent-free ion-conducting elastomer electrodes. Adv Funct Mater 30(15):1909252. https://doi.org/10.1002/adfm.201909252
92. Jing TT, Wang SC, Yuan HY et al (2023) Interfacial roughness enhanced gel/elastomer interfacial bonding enables robust and stretchable triboelectric nanogenerator for reliable energy harvesting. Small 19(12):2206528. https://doi.org/10.1002/smll.202206528
93. Sun JM, Pu X, Liu MM et al (2018) Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources. ACS Nano 12(6):6147–6155. https://doi.org/10.1021/acsnano.8b02479
94. Li Y, Xiao S, Zhang XX et al (2022) Silk inspired in-situ interlocked superelastic microfibers for permeable stretchable triboelectric nanogenerator. Nano Energy 98:107347. https://doi.org/10.1016/j.nanoen.2022.107347
95. Deng HT, Zhang XR, Wang ZY et al (2021) Super-stretchable multi-sensing triboelectric nanogenerator based on liquid conductive composite. Nano Energy 83:105823. https://doi.org/10.1016/j.nanoen.2021.105823
96. Cui SY, Lu YY, Kong DP et al (2023) Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors. Opto Electron Adv 6(7):220172. https://doi.org/10.29026/oea.2023.220172
97. Wang ZH, Lei KC, Tang HZ et al (2023) Stretchable triboelectric e-skin enabled proprioceptive vibration sensing for soft robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, p.588–593. https://doi.org/10.1109/ICRA48891.2023.10160790
98. Mu SL, Li SJ, Zhao HF et al (2023) A platypus-inspired electro-mechanosensory finger for remote control and tactile sensing. Nano Energy 116:108790. https://doi.org/10.1016/j.nanoen.2023.108790
99. Yang L, Liu CS, Yuan WJ et al (2022) Fully stretchable, porous MXene–graphene foam nanocomposites for energy harvesting and self-powered sensing. Nano Energy 103:107807. https://doi.org/10.1016/j.nanoen.2022.107807
100. Ye ZQ, Pang GY, Liang YH et al (2023) Highly stretchable and sensitive strain sensor based on porous materials and rhombic-mesh structures for robot teleoperation. Adv Sens Res 2(10):2300044. https://doi.org/10.1002/adsr.202300044
101. Lu CX, Chen J, Jiang T et al (2018) A stretchable, flexible triboelectric nanogenerator for self-powered real-time motion monitoring. Adv Mater Technol 3(6):1800021. https://doi.org/10.1002/admt.201800021
102. Gogurla N, Roy B, Park JY et al (2019) Skin-contact actuated single-electrode protein triboelectric nanogenerator and strain sensor for biomechanical energy harvesting and motion sensing. Nano Energy 62:674–681. https://doi.org/10.1016/j.nanoen.2019.05.082
103. Shen S, Xiao X, Chen J et al (2021) Wearable triboelectric nanogenerators for heart rate monitoring. Chem Commun 57(48):5871–5879. https://doi.org/10.1039/d1cc02091a
104. Guo HY, Pu XJ, Chen J et al (2018) A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci Robot 3(20):eaat2516. https://doi.org/10.1126/scirobotics.aat2516
105. Zhou M, Huang MK, Zhong H et al (2022) Contact separation triboelectric nanogenerator based neural interfacing for effective sciatic nerve restoration. Adv Funct Mater 32(22):2200269. https://doi.org/10.1002/adfm.202200269
106. Lu YY, Fujita Y, Honda S et al (2021) Wireless and flexible skin moisture and temperature sensor sheets toward the study of thermoregulator center. Adv Healthc Mater 10(17):2170078. https://doi.org/10.1002/adhm.202100103
107. Zhao TM, Fu YM, Sun CX et al (2022) Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators. Biosens Bioelectron 205:114115. https://doi.org/10.1016/j.bios.2022.114115
108. Yang D, Ni YF, Kong XX et al (2021) Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment. ACS Nano 15(9):14653–14661. https://doi.org/10.1021/acsnano.1c04384
109. Yang D, Yan JS, Cheng J et al (2024) Development of flexible electronic biosensors for healthcare engineering. IEEE Sens J 24(8):11998–12016. https://doi.org/10.1109/JSEN.2023.3287291
110. Luo XX, Zhu LP, Wang YC et al (2021) A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv Funct Mater 31(38):2104928. https://doi.org/10.1002/adfm.202104928
111. Ghosh SK, Kim J, Kim MP et al (2022) Ferroelectricity-coupled 2D-MXene-based hierarchically designed high-performance stretchable triboelectric nanogenerator. ACS Nano 16(7):11415–11427. https://doi.org/10.1021/acsnano.2c05531
112. Zhang MY, Zhu WX, Zhang TT et al (2022) Lever-inspired triboelectric nanogenerator with ultra-high output for pulse monitoring. Nano Energy 97:107159. https://doi.org/10.1016/j.nanoen.2022.107159
113. Zhi CW, Shi S, Meng S et al (2023) A biocompatible and antibacterial all-textile structured triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 115:108734. https://doi.org/10.1016/j.nanoen.2023.108734
114. Wang JJ, Cui P, Zhang JJ et al (2021) A stretchable self-powered triboelectric tactile sensor with EGaIn alloy electrode for ultra-low-pressure detection. Nano Energy 89:106320. https://doi.org/10.1016/j.nanoen.2021.106320
115. Zhang WY, Liu Q, Chao SY et al (2021) Ultrathin stretchable triboelectric nanogenerators improved by postcharging electrode material. ACS Appl Mater Interfaces 13(36):42966–42976. https://doi.org/10.1021/acsami.1c13840
116. Zou Y, Gai YS, Tan PC et al (2022) Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill. Fundam Res 2(4):619–628. https://doi.org/10.1016/j.fmre.2022.01.003
117. Li CY, Xu ZJ, Xu SX et al (2023) Miniaturized retractable thin-film sensor for wearable multifunctional respiratory monitoring. Nano Res 16(9):11846–11854. https://doi.org/10.1007/s12274-023-5420-1
118. Feng TX, Ling D, Li CY et al (2024) Stretchable on-skin touchless screen sensor enabled by ionic hydrogel. Nano Res 17:4462–4470. https://doi.org/10.1007/s12274-023-6365-8
119. Anithkumar M, Prasanna APS, Alluri NR et al (2023) Self-powered smart touchpad using novel intrinsic piezo-tribo hybrid nanogenerator. Adv Funct Mater 33(23):2213907. https://doi.org/10.1002/adfm.202213907
120. Tao K, Chen ZS, Yu JH et al (2022) Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human–machine interfaces. Adv Sci 9(10):e2104168. https://doi.org/10.1002/advs.202104168
121. Wong TH, Liu YM, Li J et al (2021) Triboelectric nanogenerator tattoos enabled by epidermal electronic technologies. Adv Funct Mater 32(15):2111269. https://doi.org/10.1002/adfm.202111269
122. An T, Anaya DV, Gong S et al (2020) Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human–machine interface. Nano Energy 77:105295. https://doi.org/10.1016/j.nanoen.2020.105295
123. Yin RY, Wang DP, Zhao SF et al (2020) Wearable sensors-enabled human–machine interaction systems: from design to application. Adv Funct Mater 31(11):2008936. https://doi.org/10.1002/adfm.202008936
124. Liu YM, Yiu CK, Zhao Z et al (2023) Soft, miniaturized, wireless olfactory interface for virtual reality. Nat Commun 14(1):2297. https://doi.org/10.1038/s41467-023-37678-4
125. Xu KC, Lu YY, Takei K (2020) Flexible hybrid sensor systems with feedback functions. Adv Funct Mater 31(39):2007436. https://doi.org/10.1002/adfm.202007436
126. Zhu YS, Zhao TM, Sun FX et al (2023) Multi-functional triboelectric nanogenerators on printed circuit board for metaverse sport interactive system. Nano Energy 113:108520. https://doi.org/10.1016/j.nanoen.2023.108520
127. Rahman MT, Rahman MS, Kumar H et al (2023) Metal–organic framework reinforced highly stretchable and durable conductive hydrogel-based triboelectric nanogenerator for biomotion sensing and wearable human–machine interfaces. Adv Funct Mater 33(48):2303471. https://doi.org/10.1002/adfm.202303471
关于本刊
Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。
初审迅速:初审快速退稿,不影响作者投其它期刊。
审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。
收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。
文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。
期刊主页:
http://www.springer.com/journal/42242
http://www.jzus.zju.edu.cn/ (国内可下载全文)
在线投稿地址:
http://www.editorialmanager.com/bdmj/default.aspx
入群交流
围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码