内容简介
本综述论文聚焦于以色列生物3D打印的最新进展。相比于传统组织工程方法,新兴的生物3D打印可以通过3D打印技术实现仿生结构的构建和组织再生,为生物医学应用带来了全新的可能。然而,目前侧重于传统工业领域的3D打印油墨多由无机物或聚合物构成,严重限制了它在对生物相容性和生物可降解性要求较高的相关领域广泛应用的可能性。作为涉及生物体内多种细胞功能的生物活性物质,肽具有设计灵活、原料来源广泛、制备简单和固有的生物相容性的特性,可通过编程氨基酸序列实现灵活功能化,展现出了作为3D打印仿生油墨的巨大潜力,为各种先进应用提供了生物3D打印的替代方案。然而,应该指出的是,肽自组装在3D打印中的应用仍处于早期阶段,肽生物墨水的可用性有限,需要进一步探索和开发。一方面需要对肽进行合理设计,实现对其自组装的精确调控,以满足所需的力学性能。另一方面,在3D打印肽基油墨的过程中,对加工技术以及相应参数的迭代优化也是必要的。值得注意的是,以色列作为一个充满浓郁创新气息的国家,在3D打印的前沿技术研究与市场化以及肽自组装调控与应用方面做出了重大贡献,在生物3D打印领域处于领先地位。在本综述中,我们重点关注以色列3D打印的前沿技术研究(可打印组件、软器件和组织工程等)和市场化以及肽自组装(包括机制、物理化学性质和应用等)。毫无疑问,在生物3D打印领域,以色列做出了不容忽视的贡献。
引用本文(点击最下方阅读原文可下载PDF)
Gao L, Liu Z, Dikovsky D, et al., 2024. Innovation leading development: a glimpse into three-dimensional bioprinting in Israel. Bio-des Manuf 7(3):358–382. https://doi.org/10.1007/s42242-024-00275-5
文章导读
图1 3D打印和肽自组装组合用于生物3D打印应用的示意图。肽构筑单元可以通过非共价相互作用自组装形成不同的超分子结构。这些仿生超分子系统可以作为3D生物打印的生物墨水,从而在微观和宏观尺度上开发具有分层结构的仿生结构以及生物产品,如替代食品和智能生物器件等
图2 以色列3D打印技术的发展旅程。自2000年以来,以色列的3D打印行业取得了迅猛的发展——巧妙地应用3D打印技术创造出各种充满创意且对人类有益的实用产品,致使其3D打印水平享誉全球
图3 以色列的3D打印研究。(a) 可拉伸压电纳米发电机的3D打印过程;(b) 内置电子贴片的3D打印心脏;(c) 由丙烯酸和聚(乙二醇)二丙烯酸酯共价网络和聚乙烯醇物理网络组成数字光处理打印自愈合混合水凝胶;(d) 由EAAs和含有交联剂的AUD组成的3D打印高拉伸和UV固化的混合弹性体:3D打印夹具和作为电气开关导电小球;(e) 高拉伸聚合物的3D打印:显示形状记忆和药物释放的图像;(f) 采用3D打印技术制造的人工食品:3D打印的植物性牛排
图4 以色列的肽自组装研究。(a) Fmoc-Lys(Fmoc)-Asp二肽可以在低质量分数(0.002%)下自组装成纳米纤维水凝胶;(b) L-Tyr晶体的晶体堆积;(c) 在KYF(Cys、Phe和Ile)自组装过程中引入其他氨基酸可调节光活性;(d) 基于肽自组装的抗病毒涂层的开发示意图
作为生物3D打印领域的关键参与者,以色列领先的学者和初创公司在国内展开了多学科交叉的跨领域合作,致力于肽自组装和3D打印的交叉研究,独特的环境使其成为推动肽自组装在3D打印中应用的沃土。而为了更进一步促进生物3D打印在各个领域的应用,高科技国家与大市场国家之间应进行深入、广泛的国际合作,实现双赢。我们预计,这篇综述概述的关于以色列在生物3D打印方面的进展,将为未来开发具有影响力的生物3D打印产品提供一个指引和成功的经验介绍。
参考文献
上下滑动以阅览
1. Feiner R, Dvir T (2017) Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat Rev Mater 3(1):17076. https://doi.org/10.1038/natrevmats.2017.76
2. Chen K, Ren JY, Chen CY et al (2020) Safety and effectiveness evaluation of flexible electronic materials for next generation wearable and implantable medical devices. Nano Today 35:100939. https://doi.org/10.1016/j.nantod.2020.100939
3. Wang LL, Jiang K, Shen GZ (2021) Wearable, implantable, and interventional medical devices based on smart electronic skins. Adv Mater Technol 6(6):2100107. https://doi.org/10.1002/admt.202100107
4. Lee S, Wang H, Peh WYX et al (2019) Mechano-neuromodulation of autonomic pelvic nerve for underactive bladder: a triboelectric neurostimulator integrated with flexible neural clip interface. Nano Energy 60:449–456. https://doi.org/10.1016/j.nanoen.2019.03.082
5. Sultana A, Alam MM, Garain S et al (2015) An effective electrical throughput from PANI supplement ZnS nanorods and PDMS-based flexible piezoelectric nanogenerator for power up portable electronic devices: an alternative of MWCNT filler. ACS Appl Mater Interfaces 7(34):19091–19097. https://doi.org/10.1021/acsami.5b04669
6. Elder B, Neupane R, Tokita E et al (2020) Nanomaterial patterning in 3D printing. Adv Mater 32(17):e1907142. https://doi.org/10.1002/adma.201907142
7. Yang E, Miao SD, Zhong J et al (2018) Bio-based polymers for 3D printing of bioscaffolds. Polym Rev 58(4):668–687. https://doi.org/10.1080/15583724.2018.1484761
8. Li JH, Pumera M (2021) 3D printing of functional microrobots. Chem Soc Rev 50(4):2794–2838. https://doi.org/10.1039/d0cs01062f
9. Maity N, Mansour N, Chakraborty P et al (2021) A personalized multifunctional 3D printed shape memory-displaying, drug releasing tracheal stent. Adv Funct Mater 31(50):2108436. https://doi.org/10.1002/adfm.202108436
10. Dey M, Ozbolat IT (2020) 3D bioprinting of cells, tissues and organs. Sci Rep 10(1):14023. https://doi.org/10.1038/s41598-020-70086-y
11. Tamay DG, Usal TD, Alagoz AS et al (2019) 3D and 4D printing of polymers for tissue engineering applications. Front Bioeng Biotechnol 7:164. https://doi.org/10.3389/fbioe.2019.00164
12. Sithole MN, Mndlovu H, du Toit LC et al (2023) Advances in stimuli-responsive hydrogels for tissue engineering and regenerative medicine applications: a review towards improving structural design for 3D printing. Curr Pharm Des 29(40):3187–3205. https://doi.org/10.2174/0113816128246888230920060802
13. Zhu YZ, Joralmon D, Shan WT et al (2021) 3D printing biomimetic materials and structures for biomedical applications. Bio-Des Manuf 4(2):405–428. https://doi.org/10.1007/s42242-020-00117-0
14. Wangpraseurt D, You ST, Azam F et al (2020) Bionic 3D printed corals. Nat Commun 11(1):1748. https://doi.org/10.1038/s41467-020-15486-4
15. Kong YL, Gupta MK, Johnson BN et al (2016) 3D printed bionic nanodevices. Nano Today 11(3):330–350. https://doi.org/10.1016/j.nantod.2016.04.007
16. Mader M, Hambitzer L, Schlautmann P et al (2021) Melt-extrusion-based additive manufacturing of transparent fused silica glass. Adv Sci 8(23):e2103180. https://doi.org/10.1002/advs.202103180
17. Shahzad A, Lazoglu I (2021) Direct ink writing (DIW) of structural and functional ceramics: recent achievements and future challenges. Compos Part B Eng 225:109249. https://doi.org/10.1016/j.compositesb.2021.109249
18. Tricot F, Venet C, Beneventi D et al (2018) Fabrication of 3D conductive circuits: print quality evaluation of a direct ink writing process. RSC Adv 8(46):26036–26046. https://doi.org/10.1039/c8ra03380c
19. Friedrich L, Begley M (2018) In situ characterization of low-viscosity direct ink writing: stability, wetting, and rotational flows. J Colloid Interface Sci 529:599–609. https://doi.org/10.1016/j.jcis.2018.05.110
20. Lawson S, Farsad A, Rezaei F et al (2021) Direct ink writing of metal oxide/H-ZSM-5 catalysts for n-hexane cracking: a new method of additive manufacturing with high metal oxide loading. ACS Appl Mater Interfaces 13(1):781–794. https://doi.org/10.1021/acsami.0c20752
21. Tan JJY, Lee CP, Hashimoto M (2020) Preheating of gelatin improves its printability with transglutaminase in direct ink writing 3D printing. Int J Bioprint 6(4):296. https://doi.org/10.18063/ijb.v6i4.296
22. Ebers LS, Laborie MP (2020) Direct ink writing of fully bio-based liquid crystalline lignin/hydroxypropyl cellulose aqueous inks: optimization of formulations and printing parameters. ACS Appl Bio Mater 3(10):6897–6907. https://doi.org/10.1021/acsabm.0c00800
23. Gleuwitz FR, Sivasankarapillai G, Siqueira G et al (2020) Lignin in bio-based liquid crystalline network material with potential for direct ink writing. ACS Appl Bio Mater 3(9):6049–6058. https://doi.org/10.1021/acsabm.0c00661
24. Wan X, Luo L, Liu YJ et al (2020) Direct ink writing based 4D printing of materials and their applications. Adv Sci 7(16):2001000. https://doi.org/10.1002/advs.202001000
25. Pinargote NWS, Smirnov A, Peretyagin N et al (2020) Direct ink writing technology (3D printing) of graphene-based ceramic nanocomposites: a review. Nanomaterials 10(7):1300. https://doi.org/10.3390/nano10071300
26. Mondal D, Willett TL (2020) Mechanical properties of nanocomposite biomaterials improved by extrusion during direct ink writing. J Mech Behav Biomed Mater 104:103653. https://doi.org/10.1016/j.jmbbm.2020.103653
27. Masuda T, Nakayama M, Saito K et al (2020) Inkjet printing of liquid silicon. Macromol Rapid Commun 41(23):e2000362. https://doi.org/10.1002/marc.202000362
28. Cesarano J, Grieco S (1997) Robocasting: a new technique for the freeform fabrication of near-net-shape ceramics. Mater Technol 12(3–4):98–100. https://doi.org/10.1080/10667857.1997.11752736
29. Chen X, Zhao GB, Wu YL et al (2017) Cellular carbon microstructures developed by using stereolithography. Carbon 123:34–44. https://doi.org/10.1016/j.carbon.2017.07.043
30. Kim YT, Ahmadianyazdi A, Folch A (2023) Addendum: a ‘print-pause-print’ protocol for 3D printing microfluidics using multimaterial stereolithography. Nat Protoc 18(4):1377. https://doi.org/10.1038/s41596-023-00818-7
31. Choi C, Okayama Y, Morris PT et al (2022) Digital light processing of dynamic bottlebrush materials. Adv Funct Mater 32(25):2200883. https://doi.org/10.1002/adfm.202200883
32. Chiappone A, Roppolo I, Scavino E et al (2023) Three-dimensional printing of triboelectric nanogenerators by digital light processing technique for mechanical energy harvesting. ACS Appl Mater Interfaces 15(46):53974–53983. https://doi.org/10.1021/acsami.3c13323
33. Kordi O, Behravesh AH, Hasannia S et al (2023) Additive manufacture of PLLA scaffolds reinforced with graphene oxide nano-particles via digital light processing (DLP). J Biomater Appl 38(4):484–499. https://doi.org/10.1177/08853282231202734
34. Wang H, Xia Y, Zhang ZX et al (2023) 3D gradient printing based on digital light processing. J Mater Chem B 11(37):8883–8896. https://doi.org/10.1039/d3tb00763d
35. Cazin I, Rossegger E, Roppolo I et al (2023) Digital light processing 3D printing of dynamic magneto-responsive thiol-acrylate composites. RSC Adv 13(26):17536–17544. https://doi.org/10.1039/d3ra02504g
36. Feng ZX, Li JS, Zhou DS et al (2023) A novel photocurable pullulan-based bioink for digital light processing 3D printing. Int J Bioprint 9(2):657. https://doi.org/10.18063/ijb.v9i2.657
37. Pongwisuthiruchte A, Dubas ST, Aumnate C et al (2022) Mechanically tunable resins based on acrylate-based resin for digital light processing (DLP) 3D printing. Sci Rep 12(1):20025. https://doi.org/10.1038/s41598-022-24667-8
38. Gong JX, Qian Y, Lu KJ et al (2022) Digital light processing (DLP) in tissue engineering: from promise to reality, and perspectives. Biomed Mater 17(6):062004. https://doi.org/10.1088/1748-605X/ac96ba
39. Mo XW, Ouyang LL, Xiong Z et al (2022) Advances in digital light processing of hydrogels. Biomed Mater 17(4):042002. https://doi.org/10.1088/1748-605X/ac6b04
40. Wang M, Li W, Mille LS et al (2021) Digital light processing based bioprinting with composable gradients. Adv Mater 34(1):2107038. https://doi.org/10.1002/adma.202107038
41. Fang ZZ, Shi YP, Zhang YH et al (2021) Reconfigurable polymer networks for digital light processing 3D printing. ACS Appl Mater Interfaces 13(13):15584–15590. https://doi.org/10.1021/acsami.0c23107
42. Krkobabic M, Medarevic D, Pesic N et al (2020) Digital light processing (DLP) 3D printing of atomoxetine hydrochloride tablets using photoreactive suspensions. Pharmaceutics 12(9):833. https://doi.org/10.3390/pharmaceutics12090833
43. Kim SH, Kim DY, Lim TH et al (2020) Silk fibroin bioinks for digital light processing (DLP) 3D bioprinting. In: Chun HJ, Reis RL, Motta A et al (Eds.), Bioinspired Biomaterials. Springer, Singapore, p. 53–66. https://doi.org/10.1007/978-981-15-3258-0_4
44. Chapter Traugutt NA, Mistry D, Luo CQ et al (2020) Liquid-crystal-elastomer-based dissipative structures by digital light processing 3D printing. Adv Mater 32(28):e2000797. https://doi.org/10.1002/adma.202000797
45. Hong H, Seo YB, Kim DY et al (2020) Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials 232:119679. https://doi.org/10.1016/j.biomaterials.2019.119679
46. Kuang X, Wu JT, Chen KJ et al (2019) Grayscale digital light processing 3D printing for highly functionally graded materials. Sci Adv 5(5):eaav5790. https://doi.org/10.1126/sciadv.aav5790
47. Zhao TT, Yu R, Li S et al (2019) Superstretchable and processable silicone elastomers by digital light processing 3D printing. ACS Appl Mater Interfaces 11(15):14391–14398. https://doi.org/10.1021/acsami.9b03156
48. Huang BX, Hu R, Xue ZH et al (2020) Continuous liquid interface production of alginate/polyacrylamide hydrogels with supramolecular shape memory properties. Carbohydr Polym 231:115736. https://doi.org/10.1016/j.carbpol.2019.115736
49. Decante G, Costa JB, Silva-Correia J et al (2021) Engineering bioinks for 3D bioprinting. Biofabrication 13:032001. https://doi.org/10.1088/1758-5090/abec2c
50. Chang R, Zhao LY, Xing RR et al (2023) Functional chromopeptide nanoarchitectonics: molecular design, self-assembly and biological applications. Chem Soc Rev 52(8):2688–2712. https://doi.org/10.1039/d2cs00675h
51. Zhang Y, Li Q, Wu HR et al (2023) Racemic amino acid assembly enables supramolecular β-sheet transition with property modulations. ACS Nano 17(3):2737–2744. https://doi.org/10.1021/acsnano.2c11006
52. Kam D, Braner A, Abouzglo A et al (2021) 3D printing of cellulose nanocrystal-loaded hydrogels through rapid fixation by photopolymerization. Langmuir 37(21):6451–6458. https://doi.org/10.1021/acs.langmuir.1c00553
53. Pujals S, Tao K, Terradellas A et al (2017) Studying structure and dynamics of self-assembled peptide nanostructures using fluorescence and super resolution microscopy. Chem Commun 53(53):7294–7297. https://doi.org/10.1039/c7cc02176c
54. Jia Y, Yan XH, Li JB (2022) Schiff base mediated dipeptide assembly toward nanoarchitectonics. Angew Chem 61(43):e202207752. https://doi.org/10.1002/anie.202207752
55. Tao K, Levin A, Adler-Abramovich L et al (2016) Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials. Chem Soc Rev 45(14):3935–3953. https://doi.org/10.1039/c5cs00889a
56. Wang J, Zou QL, Yan XH (2017) Peptide supramolecular self-assembly: structural precise regulation and functionalization. Acta Chim Sinica 75(10):933–942 (in Chinese). https://doi.org/10.6023/A17060272
57. Chen Y, Tao K, Ji W et al (2022) Histidine as a key modulator of molecular self-assembly: peptide-based supramolecular materials inspired by biological systems. Mater Today 60:106–127. https://doi.org/10.1016/j.mattod.2022.08.011
58. Sun BB, Tao K, Jia Y et al (2019) Photoactive properties of supramolecular assembled short peptides. Chem Soc Rev 48(16):4387–4400. https://doi.org/10.1039/c9cs00085b
59. Wang YX, Geng Q, Zhang Y et al (2023) Fmoc-diphenylalanine gelating nanoarchitectonics: a simplistic peptide self-assembly to meet complex applications. J Colloid Interface Sci 636:113–133. https://doi.org/10.1016/j.jcis.2022.12.166
60. Yuan CQ, Ji W, Xing RR et al (2019) Hierarchically oriented organization in supramolecular peptide crystals. Nat Rev Chem 3(10):567–588. https://doi.org/10.1038/s41570-019-0129-8
61. Ge Q, Chen Z, Cheng JX et al (2021) 3D printing of highly stretchable hydrogel with diverse UV curable polymers. Sci Adv 7(2):eaba4261. https://doi.org/10.1126/sciadv.aba4261
62. Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci USA 99(8):5133–5138. https://doi.org/10.1073/pnas.072699999
63. Kumar M, Ing NL, Narang V et al (2018) Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures. Nat Chem 10(7):696–703. https://doi.org/10.1038/s41557-018-0047-2
64. Liu YM, Xing RR, Li JB et al (2023) Covalently triggered self-assembly of peptide-based nanodrugs for cancer theranostics. iScience 26(1):105789. https://doi.org/10.1016/j.isci.2022.105789
65. Wang AH, Yang Y, Yan XH et al (2016) Preparation of multicompartment silica-gelatin nanoparticles with self-decomposability as drug containers for cancer therapy in vitro. RSC Adv 6(74):70064–70071. https://doi.org/10.1039/C6RA10743E
66. Yan XH, Zhu PL, Li JB (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39(6):1877–1890. https://doi.org/10.1039/b915765b
67. Li H, Zhao YY, Jia Y et al (2020) pH-responsive dopamine-based nanoparticles assembled via Schiff base bonds for synergistic anticancer therapy. Chem Commun 56(87):13347–13350. https://doi.org/10.1039/d0cc04656f
68. Liu K, Xing RR, Zou QL et al (2016) Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy. Angew Chem 55(9):3036–3039. https://doi.org/10.1002/anie.201509810
69. Ding X, Zhao HM, Li YZ et al (2020) Synthetic peptide hydrogels as 3D scaffolds for tissue engineering. Adv Drug Deliv Rev 160:78–104. https://doi.org/10.1016/j.addr.2020.10.005
70. Oliver-Cervello L, Martin-Gomez H, Gonzalez-Garcia C et al (2023) Protease-degradable hydrogels with multifunctional biomimetic peptides for bone tissue engineering. Front Bioeng Biotechnol 11:1192436. https://doi.org/10.3389/fbioe.2023.1192436
71. Hao ZW, Chen RX, Chai C et al (2022) Antimicrobial peptides for bone tissue engineering: diversity, effects and applications. Front Bioeng Biotechnol 10:1030162. https://doi.org/10.3389/fbioe.2022.1030162
72. Brun P, Zamuner A, Cassari L et al (2021) Chitosan covalently functionalized with peptides mapped on vitronectin and BMP-2 for bone tissue engineering. Nanomaterials 11(11):2784. https://doi.org/10.3390/nano11112784
73. Hao ZW, Li JF (2021) Local administration of parathyroid hormone and parathyroid hormone-related peptides for bone tissue engineering. J Biomed Eng 38(5):1028–1034. https://doi.org/10.7507/1001-5515.202104045
74. Singhatanadgit W, Sungkhaphan P, Theerathanagorn T et al (2019) Analysis of sequential dual immobilization of type I collagen and BMP-2 short peptides on hydrolyzed poly(buthylene succinate)/beta-tricalcium phosphate composites for bone tissue engineering. J Biomater Appl 34(3):351–364. https://doi.org/10.1177/0885328219852820
75. Visser R, Rico-Llanos GA, Pulkkinen H et al (2016) Peptides for bone tissue engineering. J Contr Release 244(Pt A):122–135. https://doi.org/10.1016/j.jconrel.2016.10.024
76. Brun P, Ghezzo F, Roso M et al (2011) Electrospun scaffolds of self-assembling peptides with poly(ethylene oxide) for bone tissue engineering. Acta Biomater 7(6):2526–2532. https://doi.org/10.1016/j.actbio.2011.02.025
77. Wang T, Liu Q, Chang YT et al (2023) Designed peptide-grafted hydrogels for human pluripotent stem cell culture and differentiation. J Mater Chem B 11:1434–1444. https://doi.org/10.1039/d2tb02521c
78. He L, Lan SJ, Cheng QF et al (2023) Self-assembling peptide SCIBIOIII hydrogel for three-dimensional cell culture that promotes wound healing in diabetic mice. Gels 9(4):265. https://doi.org/10.3390/gels9040265
79. Li JL, Xue Y, Wang AH et al (2022) Polyaniline functionalized peptide self-assembled conductive hydrogel for 3D cell culture. Gels 8(6):372. https://doi.org/10.3390/gels8060372
80. Restu WK, Yamamoto S, Nishida Y et al (2020) Hydrogel formation by short D-peptide for cell-culture scaffolds. Mater Sci Eng C Mater Biol Appl 111:110746. https://doi.org/10.1016/j.msec.2020.110746
81. Harper MM, Connolly ML, Goldie L et al (2018) Biogelx: cell culture on self-assembling peptide gels. In: Nilsson BL, Doran TM (Eds.), Peptide Self-assembly: Methods and Protocols. Springer, New York, p. 283–303. https://doi.org/10.1007/978-1-4939-7811-3_18
82. Chapter Bennink LL, Li Y, Kim B et al (2018) Visualizing collagen proteolysis by peptide hybridization: from 3D cell culture to in vivo imaging. Biomaterials 183:67–76. https://doi.org/10.1016/j.biomaterials.2018.08.039
83. Dou XQ, Feng CL (2017) Amino acids and peptide-based supramolecular hydrogels for three-dimensional cell culture. Adv Mater 29(16):1604062. https://doi.org/10.1002/adma.201604062
84. Worthington P, Pochan DJ, Langhans SA (2015) Peptide hydrogels—versatile matrices for 3D cell culture in cancer medicine. Front Oncol 5:92. https://doi.org/10.3389/fonc.2015.00092
85. Modepalli VN, Rodriguez AL, Li R et al (2014) In vitro response to functionalized self-assembled peptide scaffolds for three-dimensional cell culture. Biopolymers 102(2):197–205. https://doi.org/10.1002/bip.22469
86. Reis LA, Chiu LLY, Liang Y et al (2012) A peptide-modified chitosan-collagen hydrogel for cardiac cell culture and delivery. Acta Biomater 8(3):1022–1036. https://doi.org/10.1016/j.actbio.2011.11.030
87. Ma K, Xing RR, Jiao TF et al (2016) Injectable self-assembled dipeptide-based nanocarriers for tumor delivery and effective in vivo photodynamic therapy. ACS Appl Mater Interfaces 8(45):30759–30767. https://doi.org/10.1021/acsami.6b10754
88. Kim JH, Park CK, Park JE et al (2021) 3D print material study to reproduce the function of pig heart tissue. Technol Health Care 29(1):27–34. https://doi.org/10.3233/THC-218003
89. Maier J, Weiherer M, Huber M et al (2019) Imitating human soft tissue on basis of a dual-material 3D print using a support-filled metamaterial to provide bimanual haptic for a hand surgery training system. Quant Imaging Med Surg 9(1):30–42. https://doi.org/10.21037/qims.2018.09.17
90. Haffner M, Quinn A, Hsieh TY et al (2018) Optimization of 3D print material for the recreation of patient-specific temporal bone models. Ann Otol Rhinol Laryngol 127(5):338–343. https://doi.org/10.1177/0003489418764987
91. Weeks RD, Truby RL, Uzel SGM et al (2023) Embedded 3D printing of multimaterial polymer lattices via graph-based print path planning. Adv Mater 35(30):e2305232. https://doi.org/10.1002/adma.202305232
92. Guo T, Holzberg TR, Lim CG et al (2017) 3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution. Biofabrication 9(2):024101. https://doi.org/10.1088/1758-5090/aa6370
93. Li HJ, Zheng H, Tan YJ et al (2021) Development of an ultrastretchable double-network hydrogel for flexible strain sensors. ACS Appl Mater Interfaces 13(11):12814–12823. https://doi.org/10.1021/acsami.0c19104
94. Xiang SL, Su YX, Yin H et al (2021) Visible-light-driven isotropic hydrogels as anisotropic underwater actuators. Nano Energy 85:105965. https://doi.org/10.1016/j.nanoen.2021.105965
95. Le XX, Lu W, Zhang JW et al (2019) Recent progress in biomimetic anisotropic hydrogel actuators. Adv Sci 6(5):1801584. https://doi.org/10.1002/advs.201801584
96. Zheng BH, Zhou HW, Wang Z et al (2023) Fishing net-inspired mutiscale ionic organohydrogels with outstanding mechanical robustness for flexible electronic devices. Adv Funct Mater 33(28):2213501. https://doi.org/10.1002/adfm.202213501
97. Liang YL, Xu YB, Ye W et al (2018) Multi-stage hydrogel rockets with stage dropping-off by thermal/light stimulation. J Mater Chem A 6(35):16838–16843. https://doi.org/10.1039/C8TA06715E
98. Liu H, Nguyen H, Lin C (2017) Dynamic PEG–oeptide hydrogels via visible light and FMN-induced tyrosine dimerization. Adv Healthc Mater 7(22):1800954. https://doi.org/10.1002/adhm.201800954
99. Xue P, Bisoyi HK, Chen YH et al (2021) Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew Chem 60(7):3390–3396. https://doi.org/10.1002/anie.202014533
100. Pu S, Su JX, Li LX et al (2018) Bioinspired sweating with temperature sensitive hydrogel to passively dissipate heat from high-end wearable electronics. Energy Convers Manag 180:747–756. https://doi.org/10.1016/j.enconman.2018.11.027
101. .Zhou HW, Wang MC, Jin XL, et al (2021) Capacitive pressure sensors containing reliefs on solution-processable hydrogel electrodes. ACS Appl Mater Interfaces 13(1):1441–1451. https://doi.org/10.1021/acsami.0c18355
102. Ma XZ, Yang ZQ, Wang YJ et al (2017) Remote controlling DNA hydrogel by magnetic field. ACS Appl Mater Interfaces 9(3):1995–2000. https://doi.org/10.1021/acsami.6b12327
103. Caprioli M, Roppolo I, Chiappone A et al (2021) 3D-printed self-healing hydrogels via digital light processing. Nat Commun 12(1):2462. https://doi.org/10.1038/s41467-021-22802-z
104. Zhou Y, Layani M, Wang SC et al (2018) Fully printed flexible smart hybrid hydrogels. Adv Funct Mater 28(9):1705365. https://doi.org/10.1002/adfm.201705365
105. Zhang B, Li SY, Hingorani H et al (2018) Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. J Mater Chem B 6(20):3246–3253. https://doi.org/10.1039/c8tb00673c
106. Taherzadeh M, Baghani M, Baniassadi M et al (2016) Modeling and homogenization of shape memory polymer nanocomposites. Compos Part B Eng 91:36–43. https://doi.org/10.1016/j.compositesb.2015.12.044
107. Cooper CB, Nikzad S, Yan HP et al (2021) High energy density shape memory polymers using strain-induced supramolecular nanostructures. ACS Central Sci 7(10):1657–1667. https://doi.org/10.1021/acscentsci.1c00829
108. Delaey J, Dubruel P, Van Vlierberghe S (2020) Shape-memory polymers for biomedical applications. Adv Funct Mater 30(44):1909047. https://doi.org/10.1002/adfm.201909047
109. Mu T, Liu LW, Lan X et al (2018) Shape memory polymers for composites. Compos Sci Technol 160:169–198. https://doi.org/10.1016/j.compscitech.2018.03.018
110. Tao R, Ji LT, Li Y et al (2020) 4D printed origami metamaterials with tunable compression twist behavior and stress–strain curves. Compos B Eng 201:108344. https://doi.org/10.1016/j.compositesb.2020.108344
111. Zarek M, Layani M, Cooperstein I et al (2016) 3D printing of shape memory polymers for flexible electronic devices. Adv Mater 28(22):4449–4454. https://doi.org/10.1002/adma.201503132
112. Keneth ES, Lieberman R, Rednor M et al (2020) Multi-material 3D printed shape memory polymer with tunable melting and glass transition temperature activated by heat or light. Polymers 12(3):710. https://doi.org/10.3390/polym12030710
113. Zhao YQ, Zhu JZ, He WY et al (2023) 3D printing of unsupported multi-scale and large-span ceramic via near-infrared assisted direct ink writing. Nat Commun 14:2381. https://doi.org/10.1038/s41467-023-38082-8
114. Nguyen AK, Narayan RJ (2017) Two-photon polymerization for biological applications. Mater Today 20(6):314–322. https://doi.org/10.1016/j.mattod.2017.06.004
115. Cooperstein I, Indukuri SRKC, Bouketov A et al (2020) 3D printing of micrometer-sized transparent ceramics with on-demand optical-gain properties. Adv Mater 32(28):e2001675. https://doi.org/10.1002/adma.202001675
116. Dosovitskiy GA, Karpyuk PV, Evdokimov PV et al (2017) First 3D-printed complex inorganic polycrystalline scintillator. Cryst Eng Comm 19(30):4260–4264. https://doi.org/10.1039/C7CE00541E
117. Wang S, Feng Y, Zhang H et al (2021) Highly stable and printable Ag NWs/GO/PVP composite ink for flexible electronics. Flex Print Electron 6(2):024002. https://doi.org/10.1088/2058-8585/abf847
118. Jayathilaka WADM, Chinnappan A, Ramakrishna S (2017) A review of properties influencing the conductivity of CNT/Cu composites and their applications in wearable/flexible electronics. J Mater Chem C 5(36):9209–9237. https://doi.org/10.1039/c7tc02965a
119. Altay BN, Turkani VS, Pekarovicova A et al (2021) One-step photonic curing of screen-printed conductive Ni flake electrodes for use in flexible electronics. Sci Rep 11(1):3393. https://doi.org/10.1038/s41598-021-82961-3
120. Wallin TJ, Pikul J, Shepherd RF (2018) 3D printing of soft robotic systems. Nat Rev Mater 3(6):84–100. https://doi.org/10.1038/s41578-018-0002-2
121. Jiang JK, Bao B, Li MZ et al (2015) Fabrication of transparent multilayer circuits by inkjet printing. Adv Mater 28(7):1523. https://doi.org/10.1002/adma.201670047
122. Zub K, Hoeppener S, Schubert US (2022) Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv Mater 34(31):e2105015. https://doi.org/10.1002/adma.202105015
123. Layani M, Cooperstein I, Magdassi S (2013) UV crosslinkable emulsions with silver nanoparticles for inkjet printing of conductive 3D structures. J Mater Chem C 1(19):3244–3249. https://doi.org/10.1039/c3tc30253a
124. Agarwala S, Lee JM, Ng WL et al (2018) A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform. Biosens Bioelectron 102:365–371. https://doi.org/10.1016/j.bios.2017.11.039
125. Shin SR, Zihlmann C, Akbari M et al (2016) Reduced graphene oxide-gelma hybrid hydrogels as scaffolds for cardiac tissue engineering. Small 12(27):3677–3689. https://doi.org/10.1002/smll.201600178
126. Magdassi S, Grouchko M, Berezin O et al (2010) Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4(4):1943–1948. https://doi.org/10.1021/nn901868t
127. Zhou XR, Parida K, Halevi O et al (2020) All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure. Nano Energy 72:104676. https://doi.org/10.1016/j.nanoen.2020.104676
128. Whitesides GM (2018) Soft robotics. Angew Chem 57(16):4258–4273. https://doi.org/10.1002/anie.201800907
129. Patel DK, Sakhaei AH, Layani M et al (2017) Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Adv Mater 29(15):1606000. https://doi.org/10.1002/adma.201606000
130. Baman JR, Ahmad FS (2020) Heart failure. JAMA 324(10):1015. https://doi.org/10.1001/jama.2020.13310
131. Radisic M (2015) Biomaterials for cardiac tissue engineering. Biomed Mater 10(3):030301. https://doi.org/10.1088/1748-6041/10/3/030301
132. Kitsuka T, Takahashi F, Reinhardt J et al (2022) Advances in cardiac tissue engineering. Bioengineering 9(11):696. https://doi.org/10.3390/bioengineering9110696
133. Zhao PC, Wang BL, Wang L et al (2023) Rapid printing of 3D porous scaffolds for breast reconstruction. Bio-Des Manuf 6(6):691–703. https://doi.org/10.1007/s42242-023-00253-3
134. Zhang Y, Kumar P, Lv SW et al (2020) Recent advances in 3D bioprinting of vascularized tissues. Mater Des 199:109398. https://doi.org/10.1016/j.matdes.2020.109398
135. Noor N, Shapira A, Edri R et al (2019) 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci 6(11):1900344. https://doi.org/10.1002/advs.201900344
136. Asulin M, Michael I, Shapira A et al (2021) One-step 3D printing of heart patches with built-in electronics for performance regulation. Adv Sci 8(9):2004205. https://doi.org/10.1002/advs.202004205
137. Silberman E, Oved H, Namestnikov M et al (2023) Post-maturation reinforcement of 3D-printed vascularized cardiac tissues. Adv Mater 35(31):e2302229. https://doi.org/10.1002/adma.202302229
138. Motoki K, Park J, Spence C et al (2022) Contextual acceptance of novel and unfamiliar foods: insects, cultured meat, plant-based meat alternatives, and 3D printed foods. Food Qual Prefer 96:104368. https://doi.org/10.1016/j.foodqual.2021.104368
139. Israeli D, Goldfriend YP, Dikovsky D et al (2023) Novel plant proteins used in 3D printed meat analogues: relationship between protein physicochemical and functional characteristics. Eur Food Res Technol 249:2335–2347. https://doi.org/10.1007/s00217-023-04297-8
140. Redefinemeat precisely the same, entirely different. Redefinemeat. https://www.redefinemeat.com/technology. Accessed 20 Nov 2023
141. Steakholderfoods eat meat. Be a steakholder. Steakholderfoods. https://steakholderfoods.com/#scroll_page. Accessed 20 Nov 2023
142. Askew K (2020) Redefine meat targets ‘meat-lovers’ with 3D printed plant-based solutions: ‘we’re closer than you think’. https://www.foodnavigator.com/Article/2020/06/04/Redefine-Meat-targets-meat-lovers-with-3D-printed-plant-based-solutions-We-re-closer-than-you-think. Accessed 20 Nov 2023
143. Wang L, Lyu H, Zhang XY et al (2022) Revealing the aggregation behaviors of mesostructured collagen by the evaluation of reconstituted collagen performance. Food Hydrocoll 130:107700. https://doi.org/10.1016/j.foodhyd.2022.107700
144. CollPlant a new era in regenerative medicine. CollPlant. https://collplant.com/. Accessed 19 Dec 2023
145. Shoseyov O, Posen Y, Grynspan F (2013) Human recombinant type I collagen produced in plants. Tissue Eng Pt A 19(13–14):1527–1533. https://doi.org/10.1089/ten.tea.2012.0347
146. Seror J, Stern M, Zarka R et al (2021) The potential use of novel plant-derived recombinant human collagen in aesthetic medicine. Plast Reconstr Surg 148(6S):32s–38s. https://doi.org/10.1097/Prs.0000000000008784
147. Shilo S, Roth S, Amzel T et al (2013) Cutaneous wound healing after treatment with plant-derived human recombinant collagen flowable gel. Tissue Eng Pt A 19(13–14):1519–1526. https://doi.org/10.1089/ten.tea.2012.0345
148. Mediavilla D (2022) Meat without slaughter? Three eco-friendly alternatives are on the table. EL PAÍS. https://english.elpais.com/usa/2022-02-01/meat-without-slaughter-three-eco-friendly-alternatives-are-on-the-table.html. Accessed 20 Nov 2023
149. Lavon N (2022) New technologies for cultivated meat production. Trends Biotechnol 40(5):632–633. https://doi.org/10.1016/j.tibtech.2022.02.001
150. Ianovici I, Zagury Y, Redenski I et al (2022) 3D-printable plant protein-enriched scaffolds for cultivated meat development. Biomaterials 284:121487. https://doi.org/10.1016/j.biomaterials.2022.121487
151. Pasitka L, Cohen M, Ehrlich A et al (2023) Spontaneous immortalization of chicken fibroblasts generates stable, high-yield cell lines for serum-free production of cultured meat. Nat Food 4:35–50. https://doi.org/10.1038/s43016-022-00658-w
152. Toker A, Carmel IJ (2023) Autologous 3D neural implants for spinal cord injury. Tissue Eng Pt A 25(6):S141. https://doi.org/10.1016/S1465-3249(23)00397-3
153. MASSIVIT. https://www.massivit3d.com/about-us/. Accessed 30 Dec 2023
154. Levi H (2018) Additive manufacturing in technical ceramics. Interceram Int Ceram Rev 67:12–13. https://doi.org/10.1007/s42411-018-0009-0
155. Li M, Yang Y, Nulman J et al (2022) Unique multi-level metal layer electronics solutions offered by advanced 3D printing. In: Proceeding of the 6th IEEE Electron Devices Technology & Manufacturing Conference, p. 144–144. https://doi.org/10.1109/edtm53872.2022.9798133
156. Sokol D, Yamada M, Nulman J (2021) Design and performance of additively manufactured in-circuit board planar capacitors. IEEE Trans Electron Dev 68(11):5747–5752. https://doi.org/10.1109/ted.2021.3117934
157. Macy B (2011) Rapid/affordable composite tooling strategies utilizing fused deposition modeling. SAMPE J 47(4):37–44
158. Schniepp TJ (2016) Design guide development for additive manufacturing (FDM) of composite tooling. SAMPE J 52(6):22–28
159. Türk D, Kussmaul R, Zogg M (2017) Composites part production with additive manufacturing technologies. Proc CIRP 66:306–311. https://doi.org/10.1016/j.procir.2017.03.359
160. Afshar A, Mihut D (2020) Enhancing durability of 3D printed polymer structures by metallization. J Mater Sci Tech 53(15):185–191. https://doi.org/10.1016/j.jmst.2020.01.072
161. Zhou SX, Mei H, Chang P et al (2020) Molecule editable 3D printed polymer-derived ceramics. Coordin Chem Rev 422:213486. https://doi.org/10.1016/j.ccr.2020.213486
162. Maravola M, Conner B, Walker J et al (2019) Epoxy infiltrated 3D printed ceramics for composite tooling applications. Addit Manuf 25:59–63. https://doi.org/10.1016/j.addma.2018.10.036
163. Tao K, Xue B, Li Q et al (2019) Stable and optoelectronic dipeptide assemblies for power harvesting. Mater Today 30:10–16. https://doi.org/10.1016/j.mattod.2019.04.002
164. Ji W, Yuan CQ, Chakraborty P et al (2020) Coassembly-induced transformation of dipeptide amyloid-like structures into stimuli-responsive supramolecular materials. ACS Nano 14(6):7181–7190. https://doi.org/10.1021/acsnano.0c02138
165. Chen Y, Tao K, Ji W et al (2020) Self-assembly of cyclic dipeptides: platforms for functional materials. Protein Pept Lett 27(8):688–697. https://doi.org/10.2174/0929866527666200212123542
166. Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300(5619):625–627. https://doi.org/10.1126/science.1082387
167. Ji W, Tang YM, Makam P et al (2021) Expanding the structural diversity and functional scope of diphenylalanine-based peptide architectures by hierarchical coassembly. J Am Chem Soc 143(42):17633–17645. https://doi.org/10.1021/jacs.1c07915
168. Chakraborty P, Tang YM, Yamamoto T et al (2020) Unusual two-step assembly of a minimalistic dipeptide-based functional hypergelator. Adv Mater 32(9):e1906043. https://doi.org/10.1002/adma.201906043
169. Tikhonova TN, Cohen-Gerassi D, Arnon ZA et al (2022) Tunable self-assembled peptide hydrogel sensor for pharma cold supply chain. ACS Appl Mater Interfaces 14(50):55392–55401. https://doi.org/10.1021/acsami.2c17609
170. Guerin S, Stapleton A, Chovan D et al (2017) Control of piezoelectricity in amino acids by supramolecular packing. Nat Mater 17(2):180–186. https://doi.org/10.1038/nmat5045
171. Ji W, Xue B, Arnon ZA et al (2019) Rigid tightly packed amino acid crystals as functional supramolecular materials. ACS Nano 13(12):14477–14485. https://doi.org/10.1021/acsnano.9b08217
172. Makam P, Yamijala SSRKC, Tao K et al (2019) Non-proteinaceous hydrolase comprised of a phenylalanine metallo-supramolecular amyloid-like structure. Nat Catal 2(11):977–985. https://doi.org/10.1038/s41929-019-0348-x
173. Makam P, Yamijala SSRKC, Bhadram VS et al (2022) Single amino acid bionanozyme for environmental remediation. Nat Commun 13(1):1505. https://doi.org/10.1038/s41467-022-28942-0
174. Cordero RJB, Casadevall A (2020) Melanin. Curr Biol 30(4):R142–R143. https://doi.org/10.1016/j.cub.2019.12.042
175. Nicolai MPJ, Shawkey MD, Porchetta S et al (2020) Exposure to UV radiance predicts repeated evolution of concealed black skin in birds. Nat Commun 11(1):2414. https://doi.org/10.1038/s41467-020-15894-6
176. Lampel A, McPhee SA, Park HA et al (2017) Polymeric peptide pigments with sequence-encoded properties. Science 356(6342):1064–1068. https://doi.org/10.1126/science.aal5005
177. Reddy SMM, Rasslenberg E, Sloan-Dennison S et al (2020) Proton-conductive melanin-like fibers through enzymatic oxidation of a self-assembling peptide. Adv Mater 32(46):e2003511. https://doi.org/10.1002/adma.202003511
178. Lampel A, McPhee SA, Kassem S et al (2021) Melanin-inspired chromophoric microparticles composed of polymeric peptide pigments. Angew Chem 60(14):7564–7569. https://doi.org/10.1002/anie.202015170
179. Jones JC, Turpin EA, Bultmann H et al (2006) Inhibition of influenza virus infection by a novel antiviral peptide that targets viral attachment to cells. J Virol 80(24):11960–11967. https://doi.org/10.1128/jvi.01678-06
180. Nir S, Zanuy D, Zada T et al (2019) Tailoring the self-assembly of a tripeptide for the formation of antimicrobial surfaces. Nanoscale 11(18):8752–8759. https://doi.org/10.1039/c8nr10043h
181. Hu T, Agazani O, Nir S et al (2021) Antiviral activity of peptide-based assemblies. ACS Appl Mater Interfaces 13(41):48469–48477. https://doi.org/10.1021/acsami.1c16003
182. Sun L, Dick A, Meuser ME et al (2020) Design, synthesis, and mechanism study of benzenesulfonamide-containing phenylalanine derivatives as novel HIV-1 capsid inhibitors with improved antiviral activities. J Med Chem 63(9):4790–4810. https://doi.org/10.1021/acs.jmedchem.0c00015
183. Baltina LA, Fairushina AI, Baltina LA et al (2017) Synthesis and antiviral activity of glycyrrhizic-acid conjugates with aromatic amino acids. Chem Nat Compd 53(6):1096–1100. https://doi.org/10.1007/s10600-017-2209-7
184. Adler-Abramovich L, Gazit E (2008) Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology. J Pept Sci 14(2):217–223. https://doi.org/10.1002/psc.963
185. Mohanraj G, Mao CW, Armine A et al (2018) Ink-jet printing-assisted modification on polyethersulfone membranes using a UV-reactive antimicrobial peptide for fouling-resistant surfaces. ACS Omega 3(8):8752–8759. https://doi.org/10.1021/acsomega.8b00916
186. Yang J, Chen MJ, Lee H et al (2021) Three-dimensional printing of self-assembled dipeptides. ACS Appl Mater Interfaces 13(17):20573–20580. https://doi.org/10.1021/acsami.1c03062
关于本刊
Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。
初审迅速:初审快速退稿,不影响作者投其它期刊。
审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。
收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。
文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。
期刊主页:
http://www.springer.com/journal/42242
http://www.jzus.zju.edu.cn/ (国内可下载全文)
在线投稿地址:
http://www.editorialmanager.com/bdmj/default.aspx
入群交流
围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码