首尔大学Seung Hwan Ko等 | 用于即时检验的电化学生物传感器

文摘   2024-09-02 19:07   浙江  

内容简介


本综述论文聚焦用于即时检验的电化学生物传感器。即时检验(POCT)是一种在患者身边进行疾病诊断和监测的做法,与仅在医学实验室或其他临床环境中进行的传统治疗不同。由于缺乏能够促进有效医疗测试的便携式医疗设备,POCT在最近过去较少见。然而这一领域近期呈现出增长态势,得益于诊断技术的进步、设备的小型化,以及可穿戴电子设备的快速发展。在这些发展中,电化学传感器因其高灵敏度、紧凑的尺寸并且经济实惠而在POCT领域引起了兴趣。它们被用于从疾病诊断到健康状况监测的各种应用。在本文中,我们探讨了电化学传感器的最新进展、制造它们的方法以及可以使用的各种传感机制。此外,我们还探究了如何将酶、抗体和核酸适配体等特定生物识别元素固定于电极表面,以及这些传感器在现实世界即时检验中的应用方式。


引用本文(点击最下方阅读原文可下载PDF)

Kim J, Jeong J, Ko SH, 2024. Electrochemical biosensors for point-of-care testing. Bio-des Manuf 7(4):548–565. https://doi.org/10.1007/s42242-024-00301-6

文章导读



图1 使用生物受体检测生物流体中各种分析物的电化学系统示意图


图2 酶基电化学生物传感器在即时检验器件中的应用


图3 电化学免疫传感器在即时检验器件中的应用

参考文献

上下滑动以阅览

1. Campuzano S, Pedrero M, Yáñez-Sedeño P et al (2021) New challenges in point of care electrochemical detection of clinical biomarkers. Sens Actuat B Chem 345:130349. https://doi.org/10.1016/j.snb.2021.130349

2. Avraham R (2006) Moving biosensors to point-of-care cancer diagnostics. Biosens Bioelectron 21(10):1847–1850. https://doi.org/10.1016/j.bios.2006.02.001

3. Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21(10):1887–1892. https://doi.org/10.1016/j.bios.2005.10.027

4. da Silva ETSG, Souto DEP, Barragan JTC et al (2017) Electrochemical biosensors in point-of-care devices: recent advances and future trends. ChemElectroChem 4(4):778–794. https://doi.org/10.1002/celc.201600758

5. Dai YF, Liu CC (2019) Recent advances on electrochemical biosensing strategies toward universal point-of-care systems. Angew Chem 131(36):12483–12496. https://doi.org/10.1002/ange.201901879

6. Yu Y, Nyein HYY, Gao W et al (2020) Flexible electrochemical bioelectronics: the rise of in situ bioanalysis. Adv Mater 32(15):e1902083. https://doi.org/10.1002/adma.201902083

7. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39(5):1747–1763. https://doi.org/10.1039/b714449k

8. Rocchitta G, Spanu A, Babudieri S et al (2016) Enzyme biosensors for biomedical applications: strategies for safeguarding analytical performances in biological fluids. Sensors 16(6):780. https://doi.org/10.3390/s16060780

9. Sumitha MS, Xavier TS (2023) Recent advances in electrochemical biosensors—a brief review. Hybrid Adv 2:100023. https://doi.org/10.1016/j.hybadv.2023.100023

10. Nguyen HH, Kim M (2017) An overview of techniques in enzyme immobilization. Appl Sci Converg Technol 26(6):157–163. https://doi.org/10.5757/ASCT.2017.26.6.157

11. Liu XW, Hu QY, Wu Q et al (2009) Aligned ZnO nanorods: a useful film to fabricate amperometric glucose biosensor. Colloids Surf B 74(1):154–158. https://doi.org/10.1016/j.colsurfb.2009.07.011

12. Kowalewska B, Jakubow K (2017) The impact of immobilization process on the electrochemical performance, bioactivity and conformation of glucose oxidase enzyme. Sens Actuat B Chem 238:852–861. https://doi.org/10.1016/j.snb.2016.07.138

13. Barredo JL (2005) Microbial Enzymes and Biotransformations. Humana Totowa, NJ, USA. https://doi.org/10.1385/1592598463

14. Sakalauskiene L, Popov A, Kausaite-Minkstimiene A et al (2022) The impact of glucose oxidase immobilization on dendritic gold nanostructures on the performance of glucose biosensors. Biosensors 12(5):320. https://doi.org/10.3390/bios12050320

15. Wang Y, Zhai FG, Hasebe Y et al (2018) A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode. Bioelectrochemistry 122:174–182. https://doi.org/10.1016/j.bioelechem.2018.04.003

16. Bi R, Ma XY, Miao KP et al (2023) Enzymatic biosensor based on dendritic gold nanostructure and enzyme precipitation coating for glucose sensing and detection. Enzyme Microb Technol 162:110132. https://doi.org/10.1016/j.enzmictec.2022.110132

17. Sharma D, Lee J, Seo J et al (2017) Development of a sensitive electrochemical enzymatic reaction-based cholesterol biosensor using nano-sized carbon interdigitated electrodes decorated with gold nanoparticles. Sensors 17(9):2128. https://doi.org/10.3390/s17092128

18. Yan QH, Zhi N, Yang L et al (2020) A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode. Sci Rep 10(1):10607. https://doi.org/10.1038/s41598-020-67394-8

19. Artigues M, Gilabert-Porres J, Texidó R et al (2021) Analytical parameters of a novel glucose biosensor based on grafted PFM as a covalent immobilization technique. Sensors 21(12):4185. https://doi.org/10.3390/s21124185

20. Baluta S, Lesiak A, Cabaj J (2020) Simple and cost-effective electrochemical method for norepinephrine determination based on carbon dots and tyrosinase. Sensors 20(16):4567. https://doi.org/10.3390/s20164567

21. Broun GB (1976) Chemically aggregated enzymes. Method Enzymol 44(5):263–280. https://doi.org/10.1016/S0076-6879(76)44022-3

22. Yan L, Miao KP, Ma PC et al (2021) A feasible electrochemical biosensor for determination of glucose based on Prussian blue – enzyme aggregates cascade catalytic system. Bioelectrochemistry 141:107838. https://doi.org/10.1016/j.bioelechem.2021.107838

23. Hegedus I, Nagy E (2015) Stabilization of activity of cellulase and hemicellulase enzymes by covering with polyacrylamide layer. Chem Eng Process 95:143–150. https://doi.org/10.1016/j.cep.2015.06.005

24. Chapman R, Stenzel MH (2019) All wrapped up: stabilization of enzymes within single enzyme nanoparticles. J Am Chem Soc 141(7):2754–2769. https://doi.org/10.1021/jacs.8b10338

25. Hegedüs I, Hancsók J, Nagy E (2012) Stabilization of the cellulase enzyme complex as enzyme nanoparticle. Appl Biochem Biotechnol 168(6):1372–1383. https://doi.org/10.1007/s12010-012-9863-9

26. Kim J, Grate JW (2003) Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett 3(9):1219–1222. https://doi.org/10.1021/nl034404b

27. Zhong LT, Zhai JQ, Ma Y et al (2022) Molecularly imprinted polymers with enzymatic properties reduce cytokine release syndrome. ACS Nano 16(3):3797–3807. https://doi.org/10.1021/acsnano.1c08297

28. Ciui B, Tertis M, Florea A et al (2017) Electrochemical sensor for dopamine based on electropolymerized molecularly imprinted poly-aminothiophenol and gold nanoparticles. Proc Technol 27:118–119. https://doi.org/10.1016/j.protcy.2017.04.052

29. Rassas I, Braiek M, Bonhomme A et al (2019) Voltammetric glucose biosensor based on glucose oxidase encapsulation in a chitosan-kappa-carrageenan polyelectrolyte complex. Mater Sci Eng C 95:152–159. https://doi.org/10.1016/j.msec.2018.10.078

30. Oliver NS, Toumazou C, Cass AEG et al (2009) Glucose sensors: a review of current and emerging technology. Diabet Med 26(3):197–210. https://doi.org/10.1111/j.1464-5491.2008.02642.x

31. Lee H, Choi TK, Lee YB et al (2016) A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotech 11(6):566–572. https://doi.org/10.1038/nnano.2016.38

32. Chen YH, Lu SY, Zhang SS et al (2017) Skin-like biosensor system via electrochemical channels for non-invasive blood glucose monitoring. Sci Adv 3(12):e1701629. https://doi.org/10.1126/sciadv.1701629

33. Lee H, Song C, Hong YS et al (2017) Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci Adv 3(3):e1601314. https://doi.org/10.1126/sciadv.1601314

34. Keum DH, Kim SK, Koo J et al (2020) Wireless smart contact lens for diabetic diagnosis and therapy. Sci Adv 6(17):eaba3252. https://doi.org/10.1126/sciadv.aba3252

35. Gao W, Emaminejad S, Nyein HYY et al (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587):509–514. https://doi.org/10.1038/nature16521

36. Soni A, Jha SK (2015) A paper strip based non-invasive glucose biosensor for salivary analysis. Biosens Bioelectron 67:763–768. https://doi.org/10.1016/j.bios.2014.09.042

37. Iguchi S, Kudo H, Saito T (2007) A flexible and wearable biosensor for tear glucose measurement. Biomed Microdevices 9(4):603–609. https://doi.org/10.1007/s10544-007-9073-3

38. Dartt DA, Hodges RR, Zoukhri D (2005) Tears and their secretion. Adv Environ Biol 10:21–82. https://doi.org/10.1016/S1569-2590(05)10002-0

39. Wan JJ, Qin Z, Wang PY et al (2017) Muscle fatigue: general understanding and treatment. Exp Mol Med 49(10):e384. https://doi.org/10.1038/emm.2017.194

40. Finsterer J (2012) Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskelet Disord 13(1):218. https://doi.org/10.1186/1471-2474-13-218

41. Alam F, RoyChoudhury S, Jalal AH et al (2018) Lactate biosensing: the emerging point-of-care and personal health monitoring. Biosens Bioelectron 117:818–829. https://doi.org/10.1016/j.bios.2018.06.054

42. Kim S, Yang WS, Kim HJ et al (2019) Highly sensitive non-enzymatic lactate biosensor driven by porous nanostructured nickel oxide. Ceram Int 45(17):23370–23376. https://doi.org/10.1016/j.ceramint.2019.08.037

43. Shakhih MFM, Rosslan AS, Noor AM et al (2021) Review-enzymatic and non-enzymatic electrochemical sensor for lactate detection in human biofluids. J Electrochem Soc 168(6):067502. https://doi.org/10.1149/1945-7111/ac0360

44. Karpova EV, Laptev AI, Andreev EA et al (2020) Relationship between sweat and blood lactate levels during exhaustive physical exercise. ChemElectroChem 7(1):191–194. https://doi.org/10.1002/celc.201901703

45. Jia WZ, Bandodkar AJ, Valdés-Ramírez G (2013) Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal Chem 85(14):6553–6560. https://doi.org/10.1021/ac401573r

46. Saha T, Songkakul T, Knisely CT et al (2022) Wireless wearable electrochemical sensing platform with zero-power osmotic sweat extraction for continuous lactate monitoring. ACS Sens 7(7):2037–2048. https://doi.org/10.1021/acssensors.2c00830

47. Hojaiji H, Zhao YC, Gong MC et al (2020) An autonomous wearable system for diurnal sweat biomarker data acquisition. Lab Chip 20(24):4582–4591. https://doi.org/10.1039/D0LC00820F

48. Xuan X, Perez-Rafols C, Chen C et al (2021) Lactate biosensing for reliable on-body sweat analysis. ACS Sens 6(7):2763–2771. https://doi.org/10.1021/acssensors.1c01009

49. Sun T, Hui JN, Zhou L et al (2022) A low-cost and simple-fabricated epidermal sweat patch based on “cut-and-paste” manufacture. Sens Actuat B Chem 368:132184. https://doi.org/10.1016/j.snb.2022.132184

50. Piedras J, Dominguez RB, Gutiérrez JM (2021) Determination of uric acid in artificial saliva with compact AMP3291 reader and Au nanoparticles modified electrode. Chemosens 9(4):73. https://doi.org/10.3390/chemosensors9040073

51. Moran ME (2003) Uric acid stone disease. Front Biosci 8(6):s1339–s1355. https://doi.org/10.2741/1178

52. Falasca GF (2006) Metabolic diseases: gout. Clin Dermatol 24(6):498–508. https://doi.org/10.1016/j.clindermatol.2006.07.015

53. Nyhan WL (1997) The recognition of Lesch-Nyhan syndrome as an inborn error of purine metabolism. J Inherit Metab Dis 20(2):171–178. https://doi.org/10.1023/A:1005348504512

54. Puig JG, Martinez MA (2008) Hyperuricemia, gout and the metabolic syndrome. Curr Opin Rheumatol 20(2):187–191. https://doi.org/10.1097/BOR.0b013e3282f4b1ed

55. Chang CC, Wu CH, Liu LK et al (2018) Association between serum uric acid and cardiovascular risk in nonhypertensive and nondiabetic individuals: the Taiwan I-Lan longitudinal aging study. Sci Rep 8(1):5234. https://doi.org/10.1038/s41598-018-22997-0

56. Miyaoka T, Mochizuki T, Takei T et al (2013) Serum uric acid levels and long-term outcomes in chronic kidney disease. Heart Vessels 29(4):504–512. https://doi.org/10.1007/s00380-013-0396-0

57. Shi WS, Li J, Wu J et al (2020) An electrochemical biosensor based on multi-wall carbon nanotube-modified screen-printed electrode immobilized by uricase for the detection of salivary uric acid. Anal Bioanal Chem 412(26):7275–7283. https://doi.org/10.1007/s00216-020-02860-w

58. Liu ML, Chen Q, Lai CL et al (2013) A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a nanocomposite of ferrocene thiolate stabilized Fe3O4@Au nanoparticles with graphene sheet. Biosens Bioelectron 48:75–81. https://doi.org/10.1016/j.bios.2013.03.070

59. Yang LQ, Huang N, Lu QJ et al (2016) A quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a ferrocene derivative functional Au NPs/carbon dots nanocomposite and graphene. Anal Chim Acta 903:69–80. https://doi.org/10.1016/j.aca.2015.11.021

60. Kim J, Imani S, de Araujo WR et al (2015) Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens Bioelectron 74:1061–1068. https://doi.org/10.1016/j.bios.2015.07.039

61. Ngamchuea K, Batchelor-McAuley C, Compton RG (2018) Understanding electroanalytical measurements in authentic human saliva leading to the detection of salivary uric acid. Sens Actuat B Chem 262:404–410. https://doi.org/10.1016/j.snb.2018.02.014

62. Turkkan G, Bas SZ, Atacan K et al (2022) An electrochemical sensor based on a Co3O4–ERGO nanocomposite modified screen-printed electrode for detection of uric acid in artificial saliva. Anal Methods 14(1):67–75. https://doi.org/10.1039/d1ay01744f

63. Huang X, Shi WS, Li J et al (2020) Determination of salivary uric acid by using poly(3,4-ethylenedioxythipohene) and graphene oxide in a disposable paper-based analytical device. Anal Chim Acta 1103:75–83. https://doi.org/10.1016/j.aca.2019.12.057

64. Pink R, Simek J, Vondrakova J et al (2009) Saliva as a diagnostic medium. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 153(2):103–110. https://doi.org/10.5507/bp.2009.017

65. Ilea A, Andrei V, Feurdean CN et al (2019) Saliva, a magic biofluid available for multilevel assessment and a mirror of general health—a systematic review. Biosensors 9(1):27. https://doi.org/10.3390/bios9010027

66. Kim J, Jeerapan I, Imani S et al (2016) Non-invasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens 1(8):1011–1019. https://doi.org/10.1021/acssensors.6b00356

67. Xu L, Hou YT, Zhang MD et al (2015) Electrochemical sensor based on a silver nanowires modified electrode for the determination of cholesterol. Anal Methods 7(13):5649–5653. https://doi.org/10.1039/C5AY01164G

68. Ahmadraji T, Killard AJ (2016) Measurement of total cholesterol using an enzyme sensor based on a printed hydrogen peroxide electrocatalyst. Anal Methods 8(13):2743–2749. https://doi.org/10.1039/C6AY00468G

69. Lin XY, Ni YN, Kokot S (2016) Electrochemical cholesterol sensor based on cholesterol oxidase and MoS2-AuNPs modified glassy carbon electrode. Sens Actuat B Chem 233:100–106. https://doi.org/10.1016/j.snb.2016.04.019

70. Sun YF, Nguyen TN, Anderson A et al (2020) In vivo glutamate sensing inside the mouse brain with perovskite nickelate−Nafion heterostructures. ACS Appl Mater Interfaces 12(22):24564–24574. https://doi.org/10.1021/acsami.0c02826

71. Tu JB, Torrente-Rodríguez RM, Wang MQ et al (2020) The era of digital health: a review of portable and wearable affinity biosensors. Adv Funct Mater 30(29):2070197. https://doi.org/10.1002/adfm.201906713

72. Aydin M, Aydin EB, Sezgintürk MK (2021) Advances in immunosensor technology. Adv Clin Chem 102:1–62. https://doi.org/10.1016/bs.acc.2020.08.001

73. Mollarasouli F, Kurbanoglu S, Ozkan SA (2019) The role of electrochemical immunosensors in clinical analysis. Biosensors 9(3):86. https://doi.org/10.3390/bios9030086

74. Evtugyn G (2014) Biosensors: Essentials. Springer, Berlin, p. 261. https://doi.org/10.1007/978-3-642-40241-8

75. Wan Y, Su Y, Zhu XH et al (2013) Development of electrochemical immunosensors towards point of care diagnostics. Biosens Bioelectron 47:1–11. https://doi.org/10.1016/j.bios.2013.02.045

76. Svalova TS, Malysheva NN, Kozitsina AN (2017) Structure of the receptor layer in electrochemical immunosensors. Modern trends and prospects of development. Russian Chem Bull 66(10):1797–1811. https://doi.org/10.1007/s11172-017-1951-0

77. Cong QM, Bian HM, Yu ZX et al (2015) A reagentless electrochemical immunosensor based on probe immobilization and the layer-by-layer assembly technique for sensitive detection of tumor markers. Anal Methods 7(22):9655–9662. https://doi.org/10.1039/c5ay01871d

78. Jiang DC, Tang J, Liu BH et al (2003) Covalently coupling the antibody on an amine-self-assembled gold surface to probe hyaluronan-binding protein with capacitance measurement. Biosens Bioelectron 18(9):1183–1191. https://doi.org/10.1016/S0956-5663(02)00253-1

79. Vashist SK, Lam E, Hrapovic S et al (2014) Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chem Rev 114(21):11083–11130. https://doi.org/10.1021/cr5000943

80. Ahmad A, Moore E (2012) Electrochemical immunosensor modified with self-assembled monolayer of 11-mercaptoundecanoic acid on gold electrodes for detection of benzo[a]pyrene in water. Analyst 137(24):5839–5844. https://doi.org/10.1039/C2AN35236B

81. Wei MY, Wen SD, Yang XQ et al (2009) Development of redox-labeled electrochemical immunoassay for polycyclic aromatic hydrocarbons with controlled surface modification and catalytic voltammetric detection. Biosens Bioelectron 24(9):2909–2914. https://doi.org/10.1016/j.bios.2009.02.031

82. Cho IH, Lee J, Kim J et al (2018) Current technologies of electrochemical immunosensors: perspective on signal amplification. Sensors 18(1):207. https://doi.org/10.3390/s18010207

83. Xiong P, Gan N, Cao YT et al (2012) An ultrasensitive electrochemical immunosensor for alpha-fetoprotein using an envision complex-antibody copolymer as a sensitive label. Materials 5(12):2757–2772. https://doi.org/10.3390/ma5122757

84. Wen W, Yan X, Zhu CZ et al (2017) Recent advances in electrochemical immunosensors. Anal Chem 89(1):138–156. https://doi.org/10.1021/acs.analchem.6b04281

85. Haque AM, Kim J, Dutta G et al (2015) Redox cycling-amplified enzymatic Ag deposition and its application in the highly sensitive detection of creatine kinase-MB. Chem Commun 51(77):14493–14496. https://doi.org/10.1039/C5CC06117B

86. Lai GS, Cheng H, Xin DH et al (2016) Amplified inhibition of the electrochemical signal of ferrocene by enzyme-functionalized graphene oxide nanoprobe for ultrasensitive immunoassay. Anal Chim Acta 902:189–195. https://doi.org/10.1016/j.aca.2015.11.014

87. Min J, Nothing M, Coble B et al (2018) Integrated biosensor for rapid and point-of-care sepsis diagnosis. ACS Nano 12(4):3378–3384. https://doi.org/10.1021/acsnano.7b08965

88. Shen WJ, Zhuo Y, Chai YQ et al (2015) Enzyme-free electrochemical immunosensor based on host–guest nanonets catalyzing amplification for procalcitonin detection. ACS Appl Mater Interfaces 7(7):4127–4134. https://doi.org/10.1021/am508137t

89. Lin YX, Zhou Q, Lin YP et al (2015) Enzymatic hydrolysate-induced displacement reaction with multifunctional silica beads doped with horseradish peroxidase–thionine conjugate for ultrasensitive electrochemical immunoassay. Anal Chem 87(16):8531–8540. https://doi.org/10.1021/acs.analchem.5b02253

90. Du D, Wang LM, Shao YY et al (2011) Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392). Anal Chem 83(3):746–752. https://doi.org/10.1021/ac101715s

91. Arévalo B, Blázquez-García M, Valverde A et al (2022) Binary MoS2 nanostructures as nanocarriers for amplification in multiplexed electrochemical immunosensing: simultaneous determination of B cell activation factor and proliferation-induced signal immunity-related cytokines. Mikrochim Acta 189(4):143. https://doi.org/10.1007/s00604-022-05250-4

92. Lim SA, Ahmed MU (2016) Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: a review. RSC Adv 6(30):24995–25014. https://doi.org/10.1039/C6RA00333H

93. Jiao L, Mu ZG, Zhu CZ et al (2016) Graphene loaded bimetallic Au@Pt nanodendrites enhancing ultrasensitive electrochemical immunoassay of AFP. Sens Actuat B Chem 231:513–519. https://doi.org/10.1016/j.snb.2016.03.034

94. Lim SA, Yoshikawa H, Tamiya E et al (2014) A highly sensitive gold nanoparticle bioprobe based electrochemical immunosensor using screen printed graphene biochip. RSC Adv 4(102):58460–58466. https://doi.org/10.1039/C4RA11066H

95. Liu GD, Lin YY, Wang J et al (2007) Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip. Anal Chem 79(20):7644–7653. https://doi.org/10.1021/ac070691i

96. Ricci F, Adornetto G, Palleschi G (2012) A review of experimental aspects of electrochemical immunosensors. Electrochim Acta 84:74–83. https://doi.org/10.1016/j.electacta.2012.06.033

97. Dutta G, Lillehoj PB (2018) Wash-free, label-free immunoassay for rapid electrochemical detection of PfHRP2 in whole blood samples. Sci Rep 8(1):17129. https://doi.org/10.1038/s41598-018-35471-8

98. Tuteja SK, Ormsby C, Neethirajan S (2018) Noninvasive label-free detection of cortisol and lactate using graphene embedded screen-printed electrode. Nanomicro Lett 10(3):41. https://doi.org/10.1007/s40820-018-0193-5

99. Khan MS, Dighe K, Wang Z et al (2019) Electrochemical-digital immunosensor with enhanced sensitivity for detecting human salivary glucocorticoid hormone. Analyst 144(4):1448–1457. https://doi.org/10.1039/C8AN02085J

100. Kamakoti V, Selvam AP, Shanmugam NR et al (2016) Flexible molybdenum electrodes towards designing affinity based protein biosensors. Biosensors 6(3):36. https://doi.org/10.3390/bios6030036

101. Mehlhorn A, Rahimi P, Joseph Y (2018) Aptamer-based biosensors for antibiotic detection: a review. Biosensors 8(2):54. https://doi.org/10.3390/bios8020054

102. Sypabekova M, Jolly P, Estrela P et al (2019) Electrochemical aptasensor using optimized surface chemistry for the detection of Mycobacterium tuberculosis secreted protein MPT64 in human serum. Biosens Bioelectron 123:141–151. https://doi.org/10.1016/j.bios.2018.07.053

103. Lin KC, Jagannath B, Muthukumar S et al (2017) Sub-picomolar label-free detection of thrombin using electrochemical impedance spectroscopy of aptamer-functionalized MoS2. Analyst 142(15):2770–2780. https://doi.org/10.1039/C7AN00548B

104. Xue J, Li Y, Liu J et al (2022) Highly sensitive electrochemical aptasensor for SARS-CoV-2 antigen detection based on aptamer-binding induced multiple hairpin assembly signal amplification. Talanta 248:123605. https://doi.org/10.1016/j.talanta.2022.123605

105. Yarahmadi S, Azadbakht A, Derikvand RM (2019) Hybrid synthetic receptor composed of molecularly imprinted polydopamine and aptamers for impedimetric biosensing of urea. Mikrochim Acta 186(2):71. https://doi.org/10.1007/s00604-018-3180-0

106. Li Y, Li X, Dong CK et al (2010) A graphene oxide-based molecularly imprinted polymer platform for detecting endocrine disrupting chemicals. Carbon 48(12):3427–3433. https://doi.org/10.1016/j.carbon.2010.05.038

107. Farid MM, Goudini L, Piri F et al (2016) Molecular imprinting method for fabricating novel glucose sensor: polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles. Food Chem 194:61–67. https://doi.org/10.1016/j.foodchem.2015.07.128


关于本刊

Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。


初审迅速:初审快速退稿,不影响作者投其它期刊。

审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。

收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。

文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。


期刊主页:

http://www.springer.com/journal/42242

http://www.jzus.zju.edu.cn/ (国内可下载全文)

在线投稿地址:

http://www.editorialmanager.com/bdmj/default.aspx


入群交流

围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码

生物设计与制造BDM
论文导读、领域资讯
 最新文章