内容简介
本综述论文聚焦光固化3D打印刺激响应水凝胶在微型功能器件中的应用。近年来, 由具有高环境适应性的刺激响应水凝胶组成的微型装置被认为是生物医学、精密传感器和可调谐光学等领域的有力候选者。可靠先进的制造方法对最大限度地发挥微型器件的应用能力至关重要。光基3D打印技术具有适用材料广、加工精度高、三维制造能力强等优点,适合制造各种功能化微型器件。本文总结了光基3D打印刺激响应微型器件的最新进展,重点介绍了光基3D打印制造技术、智能刺激响应水凝胶和可调谐微型器件在微货物操纵、靶向药物和细胞递送、活性支架、环境传感和光学成像等领域的最新突破。最后,提出了可调谐微型器件从实验室过渡到实际工程应用的挑战。阐述了未来促进可调谐微型器件发展的机遇,有助于加深对这些微型器件的了解,并进一步实现其在各个领域的实际应用。
引用本文(点击最下方阅读原文可下载PDF)
Xin C, Xia N, Zhang L, 2024. Light-based 3D printing of stimulus-responsive hydrogels for miniature devices: recent progress and perspective. Bio-des Manuf 7(5):721–746. https://doi.org/10.1007/s42242-024-00295-1
文章导读
图1 光固化3D打印刺激响应水凝胶用于微型功能器件
图2 主要光固化3D打印技术的示意图
图3 光固化3D打印化学刺激响应水凝胶微结构
图4 光固化3D打印刺激响应水凝胶用于靶向货物递送
图5 光固化3D打印刺激响应水凝胶用于可调谐微光学器件
参考文献
上下滑动以阅览
1. MacDonald E, Wicker R (2016) Multiprocess 3D printing for increasing component functionality. Science 353(6037):1512. https://doi.org/10.1126/science.aaf2093
2. Flowers PF, Reyes C, Ye SR et al (2017) 3D printing electronic components and circuits with conductive thermoplastic filament. Addit Manuf 18:156–163. https://doi.org/10.1016/j.addma.2017.10.002
3. Fantino E, Chiappone A, Roppolo I et al (2016) 3D printing of conductive complex structures with in situ generation of silver nanoparticles. Adv Mater 28(19):3712–3717. https://doi.org/10.1002/adma.201670132
4. Wallin TJ, Pikul J, Shepherd RF (2018) 3D printing of soft robotic systems. Nat Rev Mater 3(6):84–100. https://doi.org/10.1038/s41578-018-0002-2
5. Kim Y, Yuk H, Zhao RK et al (2018) Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558(7709):274–279. https://doi.org/10.1038/s41586-018-0185-0
6. Sachyani Keneth E, Kamyshny A, Totaro M et al (2021) 3D printing materials for soft robotics. Adv Mater 33(19):e2003387. https://doi.org/10.1002/adma.202003387
7. Godoi FC, Prakash S, Bhandari BR (2016) 3D printing technologies applied for food design: status and prospects. J Food Eng 179:44–54. https://doi.org/10.1016/j.jfoodeng.2016.01.025
8. Vanderploeg A, Lee SE, Mamp M (2017) The application of 3D printing technology in the fashion industry. Int J Fashion Des Technol Educ 10(2):170–179. https://doi.org/10.1080/17543266.2016.1223355
9. Everton SK, Hirsch M, Stravroulakis P et al (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95:431–445. https://doi.org/10.1016/j.matdes.2016.01.099
10. Quan HY, Zhang T, Xu H et al (2020) Photo-curing 3D printing technique and its challenges. Bioact Mater 5(1):110–115. https://doi.org/10.1016/j.bioactmat.2019.12.003
11. Yu C, Schimelman J, Wang P et al (2020) Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chem Rev 120(19):10695–10743. https://doi.org/10.1021/acs.chemrev.9b00810
12. Layani M, Wang XF, Magdassi S (2018) Novel materials for 3D printing by photopolymerization. Adv Mater 30(41):e1706344. https://doi.org/10.1002/adma.201706344
13. Blasco E, Wegener M, Barner-Kowollik C (2017) Photochemically driven polymeric network formation: synthesis and applications. Adv Mater 29(15):1604005. https://doi.org/10.1002/adma.201604005
14. Bagheri A, Jin JY (2019) Photopolymerization in 3D printing. ACS Appl Polym Mater 1(4):593–611. https://doi.org/10.1021/acsapm.8b00165
15. Gauci SC, Vranic A, Blasco E et al (2023) Photochemically activated 3D printing inks: current status, challenges, and opportunities. Adv Mater 36(3):2306468. https://doi.org/10.1002/adma.202306468
16. Koetting MC, Peters JT, Steichen SD et al (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep 93:1–49. https://doi.org/10.1016/j.mser.2015.04.001
17. Ding M, Jing L, Yang H et al (2020) Multifunctional soft machines based on stimuli-responsive hydrogels: from freestanding hydrogels to smart integrated systems. Mater Today Adv 8:100088. https://doi.org/10.1016/j.mtadv.2020.100088
18. Ware TH, McConney ME, Wie JJ et al (2015) Voxelated liquid crystal elastomers. Science 347(6225):982–984. https://doi.org/10.1126/science.1261019
19. Liu MZ, Jin LS, Yang SS et al (2023) Shape morphing directed by spatially encoded, dually responsive liquid crystalline elastomer micro-actuators. Adv Mater 35(5):e2208613. https://doi.org/10.1002/adma.202208613
20. Hager MD, Bode S, Weber C et al (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49–50:3–33. https://doi.org/10.1016/j.progpolymsci.2015.04.002
21. Ze QJ, Kuang X, Wu S et al (2020) Magnetic shape memory polymers with integrated multifunctional shape manipulation. Adv Mater 32(4):e1906657. https://doi.org/10.1002/adma.202070025
22. Xue X, Hu Y, Deng YH (2021) Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv Funct Mater 31(19):2009432. https://doi.org/10.1002/adfm.202009432
23. Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13(5):405–414. https://doi.org/10.1038/nmeth.3839
24. Kocak G, Tuncer C, Butun V (2017) pH-responsive polymers. Polym Chem 8(1):144–176. https://doi.org/10.1039/c6py01872f
25. Erol O, Pantula A, Liu WQ et al (2019) Transformer hydrogels: a review. Adv Mater Technol 4(4):1900043. https://doi.org/10.1002/admt.201900043
26. Xian SJ, Webber MJ (2020) Temperature-responsive supramolecular hydrogels. J Mater Chem B 8(40):9197–9211. https://doi.org/10.1039/d0tb01814g
27. Brighenti R, Cosma MP (2022) Mechanics of multi-stimuli temperature-responsive hydrogels. J Mech Phys Solids 169:105045. https://doi.org/10.1016/j.jmps.2022.105045
28. Lee HP, Gaharwar AK (2020) Light-responsive inorganic biomaterials for biomedical applications. Adv Sci 7(17):2000863. https://doi.org/10.1002/advs.202000863
29. ter Schiphorst J, Saez J, Diamond D et al (2018) Light-responsive polymers for microfluidic applications. Lab Chip 18(5):699–709. https://doi.org/10.1039/c7lc01297g
30. Jiang Z, Tan ML, Taheri M et al (2020) Strong, self-healable, and recyclable visible-light-responsive hydrogel actuators. Angew Chem Int Ed 59(18):7049–7056. https://doi.org/10.1002/anie.201916058
31. Li ZG, Li YZ, Chen C et al (2021) Magnetic-responsive hydrogels: from strategic design to biomedical applications. J Contr Release 335:541–556. https://doi.org/10.1016/j.jconrel.2021.06.003
32. Araújo-Custódio S, Gomez-Florit M, Tomás AR et al (2019) Injectable and magnetic responsive hydrogels with bioinspired ordered structures. ACS Biomater Sci Eng 5(3):1392–1404. https://doi.org/10.1021/acsbiomaterials.8b01179
33. Caprioli M, Roppolo I, Chiappone A et al (2021) 3D-printed self-healing hydrogels via digital light processing. Nat Commun 12(1):2462. https://doi.org/10.1038/s41467-021-22802-z
34. Ge G, Wang Q, Zhang YZ et al (2021) 3D printing of hydrogels for stretchable ionotronic devices. Adv Funct Mater 31(52):2107437. https://doi.org/10.1002/adfm.202107437
35. Wang B, Handschuh-Wang S, Shen J et al (2023) Small-scale robotics with tailored wettability. Adv Mater 35(18):e2205732. https://doi.org/10.1002/adma.202205732
36. Wang B, Kostarelos K, Nelson BJ et al (2021) Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv Mater 33:e2002047. https://doi.org/10.1002/adma.202002047
37. Wang QQ, Du XZ, Jin DD et al (2022) Real-time ultrasound Doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow. ACS Nano 16(1):604–616. https://doi.org/10.1021/acsnano.1c07830
38. Wang QQ, Chan KF, Schweizer K et al (2022) Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci Adv 7(9):eabe5914. https://doi.org/10.1126/sciadv.abe5914
39. Dong Y, Wang L, Iacovacci V et al (2022) Magnetic helical micro-/nanomachines: recent progress and perspective. Matter 5(1):77–109. https://doi.org/10.1016/j.matt.2021.10.010
40. Yang LD, Zhang L (2021) Motion control in magnetic microrobotics: from individual and multiple robots to swarms. Annu Rev Contr Robot Auton Syst 4:509–534. https://doi.org/10.1146/annurev-control-032720-104318
41. Peyer KE, Zhang L, Nelson BJ (2013) Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5(4):1259–1272. https://doi.org/10.1039/c2nr32554c
42. Lao ZX, Xia N, Wang SJ et al (2021) Tethered and untethered 3D microactuators fabricated by two-photon polymerization: a review. Micromachines 12(4):465. https://doi.org/10.3390/MI12040465
43. Hines L, Petersen K, Lum GZ et al (2017) Soft actuators for small-scale robotics. Adv Mater 29(13):1603483. https://doi.org/10.1002/adma.201603483
44. Ma XM, Wang JW, Zhao LT et al (2023) Self-assembled microfiber-like biohydrogel for ultrasensitive whole-cell electrochemical biosensing in microdroplets. Anal Chem 95(5):2628–2632. https://doi.org/10.1021/acs.analchem.2c05155
45. Ligler FS, Gooding JJ (2019) Lighting up biosensors: now and the decade to come. Anal Chem 91(14):8732–8738. https://doi.org/10.1021/acs.analchem.9b00793
46. Yan YC, He Z, Yang ZB et al (2021) Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci Robot 6(51):eabc8801. https://doi.org/10.1126/SCIROBOTICS.ABC8801
47. Arbabi A, Arbabi E, Kamali SM et al (2016) Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat Commun 7(1):13682. https://doi.org/10.1038/ncomms13682
48. Zou YC, Zhang W, Chau FS et al (2015) Miniature adjustable-focus endoscope with a solid electrically tunable lens. Opt Express 23(16):20582–20592. https://doi.org/10.1364/OE.23.020582
49. Li R, Zhang C, Li JW et al (2022) Magnetically encoded 3D mesostructure with high-order shape morphing and high-frequency actuation. Natl Sci Rev 9(11):nwac163. https://doi.org/10.1093/nsr/nwac163
50. Li MT, Tang YH, Soon RH et al (2022) Miniature coiled artificial muscle for wireless soft medical devices. Sci Adv 8(10):eabm5616. https://doi.org/10.1126/sciadv.abm5616
51. Sitti M (2018) Miniature soft robots—road to the clinic. Nat Rev Mater 3(6):74–75. https://doi.org/10.1038/s41578-018-0001-3
52. Jung YH, Chang TH, Zhang HL et al (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6(1):7170. https://doi.org/10.1038/ncomms8170
53. Schmid MD, Toulouse A, Thiele S et al (2022) 3D direct laser writing of highly absorptive photoresist for miniature optical apertures. Adv Funct Mater 33(39):2211159. https://doi.org/10.1002/adfm.202211159
54. Luo XH, Hu YQ, Li X et al (2020) Integrated metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption. Adv Opt Mater 8(8):1902020. https://doi.org/10.1002/adom.201902020
55. Wang Y, Shen J, Handschuh-Wang S et al (2023) Microrobots for targeted delivery and therapy in digestive system. ACS Nano 17(1):27–50. https://doi.org/10.1021/acsnano.2c04716
56. Wu ZG, Li L, Yang YR et al (2019) A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci Robot 4(32):eaax0613. https://doi.org/10.1126/scirobotics.aax0613
57. Wang B, Chan KF, Yuan K et al (2021) Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci Robot 6:eabd2813. https://doi.org/10.1126/scirobotics.abd2813
58. Jin DD, Wang QL, Chan KF et al (2023) Swarming self-adhesive microgels enabled aneurysm on-demand embolization in physiological blood flow. Sci Adv 9(19):eadf9278. https://doi.org/10.1126/sciadv.adf9278
59. Go GJ, Yoo A, Nguyen KT et al (2022) Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization therapy of liver cancer. Sci Adv 8(46):eabq8545. https://doi.org/10.1126/sciadv.abq8545
60. Villatoro J, Antonio-Lopez E, Schulzgen A et al (2017) Miniature multicore optical fiber vibration sensor. Opt Lett 42(10):2022–2025. https://doi.org/10.1364/OL.42.002022
61. Ni JC, Liu SL, Wu D et al (2021) Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures. Proc Natl Acad Sci USA 118(2):e2020055118. https://doi.org/10.1073/pnas.2020055118
62. Liu SL, Ni JC, Zhang C et al (2022) Tailoring optical vortical dichroism with stereometamaterials. Laser Photon Rev 16(2):2100518. https://doi.org/10.1002/lpor.202100518
63. Bártolo PJ (2011) Stereolithography: Materials, Processes and Applications. Springer, New York. https://doi.org/10.1007/978-0-387-92904-0
64. Book Google Scholar Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050
65. Zhao Z, Tian XX, Song XY (2020) Engineering materials with light: recent progress in digital light processing based 3D printing. J Mater Chem C 8(4):13896–13917. https://doi.org/10.1039/d0tc03548c
66. Mu QY, Wang L, Dunn CK et al (2017) Digital light processing 3D printing of conductive complex structures. Addit Manuf 18:74–83. https://doi.org/10.1016/j.addma.2017.08.011
67. Fang ZZ, Song HJ, Zhang Y et al (2020) Modular 4D printing via interfacial welding of digital light-controllable dynamic covalent polymer networks. Matter 2(5):1187–1197. https://doi.org/10.1016/j.matt.2020.01.014
68. Tumbleston JR, Shirvanyants D, Ermoshkin N et al (2015) Continuous liquid interface production of 3D objects. Science 347(6228):1349–1352. https://doi.org/10.1126/science.aaa2397
69. Janusziewicz R, Tumbleston JR, Quintanilla AL et al (2016) Layerless fabrication with continuous liquid interface production. Proc Natl Acad Sci USA 113(42):11703–11708. https://doi.org/10.1073/pnas.1605271113
70. Kawata S, Sun HB, Tanaka T et al (2001) Finer features for functional microdevices. Nature 412(6848):697–698. https://doi.org/10.1038/35089130
71. Kelly BE, Bhattacharya I, Heidari H et al (2019) Volumetric additive manufacturing via tomographic reconstruction. Science 363(6431):1075–1079. https://doi.org/10.1126/science.aau7114
72. Zakeri S, Vippola M, Levanen E (2020) A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. Addit Manuf 35:101177. https://doi.org/10.1016/j.addma.2020.101177
73. Kim SH, Yeon YK, Lee JM et al (2018) Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun 9(1):1620. https://doi.org/10.1038/s41467-018-03759-y
74. Dudley D, Duncan WM, Slaughter J (2003) Emerging digital micromirror device (DMD) applications. In: Urey H (Ed.), MOEMS Display and Imaging Systems, p.14–25. https://doi.org/10.1117/12.480761
75. Tiller B, Reid A, Zhu BT et al (2019) Piezoelectric microphone via a digital light processing 3D printing process. Mater Des 165:107593. https://doi.org/10.1016/j.matdes.2019.107593
76. Zabidi AZ, Li SG, Felfel RM et al (2019) Computational mechanical characterization of geometrically transformed Schwarz P lattice tissue scaffolds fabricated via two photon polymerization (2PP). Addit Manuf 25:399–411. https://doi.org/10.1016/j.addma.2018.11.021
77. Zhou XQ, Hou YH, Lin JQ (2015) A review on the processing accuracy of two-photon polymerization. AIP Adv 5(3):030701. https://doi.org/10.1063/1.4916886
78. Li L, Gattass RR, Gershgoren E et al (2009) Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science 324(5929):910–913. https://doi.org/10.1126/science.1168996
79. Geng Q, Wang DE, Chen PF et al (2019) Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat Commun 10(1):2179. https://doi.org/10.1038/s41467-019-10249-2
80. Saha SK, Wang DE, Nguyen VH et al (2019) Scalable submicrometer additive manufacturing. Science 366(6461):105–109. https://doi.org/10.1126/science.aax8760
81. Ni JC, Wang CW, Zhang CC et al (2017) Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci Appl 6(7):e17011. https://doi.org/10.1038/lsa.2017.11
82. Madrid-Wolff J, Boniface A, Loterie D et al (2022) Controlling light in scattering materials for volumetric additive manufacturing. Adv Sci 9(22):2105144. https://doi.org/10.1002/advs.202105144
83. Xie MB, Lian LM, Mu X et al (2023) Volumetric additive manufacturing of pristine silk-based (bio)inks. Nat Commun 14(1):210. https://doi.org/10.1038/s41467-023-35807-7
84. Regehly M, Garmshausen Y, Reuter M et al (2020) Xolography for linear volumetric 3D printing. Nature 588(7839):620–624. https://doi.org/10.1038/s41586-020-3029-7
85. Bao YY, Paunovic N, Leroux JC (2022) Challenges and opportunities in 3D printing of biodegradable medical devices by emerging photopolymerization techniques. Adv Funct Mater 32(15):2109864. https://doi.org/10.1002/adfm.202109864
86. Liu XY, Liu J, Lin ST et al (2020) Hydrogel machines. Mater Today 36:102–124. https://doi.org/10.1016/j.mattod.2019.12.026
87. Lee YW, Ceylan H, Yasa IC et al (2021) 3D-printed multi-stimuli-responsive mobile micromachines. ACS Appl Mater Interfaces 13(11):12759–12766. https://doi.org/10.1021/acsami.0c18221
88. Traugutt NA, Mistry D, Luo CQ et al (2020) Liquid-crystal-elastomer-based dissipative structures by digital light processing 3D printing. Adv Mater 32(28):2000797. https://doi.org/10.1002/adma.202000797
89. Li S, Bai HD, Liu Z et al (2021) Digital light processing of liquid crystal elastomers for self-sensing artificial muscles. Sci Adv 7(30):eabg3677. https://doi.org/10.1126/sciadv.abg3677
90. Zhang B, Li HG, Cheng JX et al (2021) Mechanically robust and UV-curable shape-memory polymers for digital light processing based 4D printing. Adv Mater 33(27):2101298. https://doi.org/10.1002/adma.202170210
91. Ge Q, Sakhaei AH, Lee H et al (2016) Multimaterial 4D printing with tailorable shape memory polymers. Sci Rep 6(1):31110. https://doi.org/10.1038/srep31110
92. Lee Y, Song WJ, Sun JY (2020) Hydrogel soft robotics. Mater Today Phys 15:100258. https://doi.org/10.1016/j.mtphys.2020.100258
93. Hu LX, Chee PL, Sugiarto S et al (2023) Hydrogel-based flexible electronics. Adv Mater 35(14):2205326. https://doi.org/10.1002/adma.202205326
94. Lin ST, Yuk H, Zhang T et al (2016) Stretchable hydrogel electronics and devices. Adv Mater 28(22):4497–4505. https://doi.org/10.1002/adma.201504152
95. Guimarães CF, Ahmed R, Marques AP et al (2021) Engineering hydrogel-based biomedical photonics: design, fabrication, and applications. Adv Mater 33(23):2006582. https://doi.org/10.1002/adma.202006582
96. Kim J, Nayak S, Lyon LA (2005) Bioresponsive hydrogel microlenses. J Am Chem Soc 127(26):9588–9592. https://doi.org/10.1021/ja0519076
97. Zhang XN, Zheng Q, Wu ZL (2022) Recent advances in 3D printing of tough hydrogels: a review. Compos B Eng 238:109895. https://doi.org/10.1016/j.compositesb.2022.109895
98. Zhao DH, Liu YD, Liu BH et al (2021) 3D printing method for tough multifunctional particle-based double-network hydrogels. ACS Appl Mater Interfaces 13(11):13714–13723. https://doi.org/10.1021/acsami.1c01413
99. Zhang BL, Li SY, Hingorani H et al (2018) Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. J Mater Chem B 6(20):3246–3253. https://doi.org/10.1039/c8tb00673c
100. Xu ZY, Fan CC, Zhang Q et al (2021) A self-thickening and self-strengthening strategy for 3D printing high-strength and antiswelling supramolecular polymer hydrogels as meniscus substitutes. Adv Funct Mater 31(18):2100462. https://doi.org/10.1002/adfm.202100462
101. Dong M, Han Y, Hao XP et al (2022) Digital light processing 3D printing of tough supramolecular hydrogels with sophisticated architectures as impact-absorption elements. Adv Mater 34(34):2204333. https://doi.org/10.1002/adma.202204333
102. Jin YF, Liu CC, Chai WX et al (2017) Self-supporting nanoclay as internal scaffold material for direct printing of soft hydrogel composite structures in air. ACS Appl Mater Interfaces 9(20):17457–17466. https://doi.org/10.1021/acsami.7b03613
103. Xing HZ, He XN, Wang YJ et al (2023) Strong, tough, fatigue-resistant and 3D-printable hydrogel composites reinforced by aramid nanofibers. Mater Today 68:84–95. https://doi.org/10.1016/j.mattod.2023.07.020
104. Bozuyuk U, Yasa O, Yasa IC et al (2018) Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano 12(9):9617–9625. https://doi.org/10.1021/acsnano.8b05997
105. Yasa IC, Tabak AF, Yasa O et al (2019) 3D-printed microrobotic transporters with recapitulated stem cell niche for programmable and active cell delivery. Adv Funct Mater 29(17):1808992. https://doi.org/10.1002/adfm.201808992
106. Zhao ZA, Kuang X, Yuan C et al (2018) Hydrophilic/hydrophobic composite shape-shifting structures. ACS Appl Mater Interfaces 10(23):19932–19939. https://doi.org/10.1021/acsami.8b02444
107. Huang LM, Jiang RQ, Wu JJ et al (2017) Ultrafast digital printing toward 4D shape changing materials. Adv Mater 29(7):1605390. https://doi.org/10.1002/adma.201605390
108. Maldonado N, Vegas VG, Halevi O et al (2019) 3D printing of a thermo- and solvatochromic composite material based on a Cu(II)–thymine coordination polymer with moisture sensing capabilities. Adv Funct Mater 29(15):1808424. https://doi.org/10.1002/adfm.201808424
109. Hu Y, Wang ZY, Jin DD et al (2020) Botanical-inspired 4D printing of hydrogel at the microscale. Adv Funct Mater 30(4):1907377. https://doi.org/10.1002/adfm.201907377
110. Jin DD, Chen QY, Huang TY et al (2020) Four-dimensional direct laser writing of reconfigurable compound micromachines. Mater Today 32:19–25. https://doi.org/10.1016/j.mattod.2019.06.002
111. Xin C, Jin DD, Hu YL et al (2021) Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment. ACS Nano 15(11):18048–18059. https://doi.org/10.1021/acsnano.1c06651
112. Liu BR, Dong B, Xin C et al (2023) 4D direct laser writing of submerged structural colors at the microscale. Small 19(2):e2204630. https://doi.org/10.1002/smll.202204630
113. Zhang LR, Liu BR, Wang CW et al (2022) Functional shape-morphing microarchitectures fabricated by dynamic holographically shifted femtosecond multifoci. Nano Lett 22(13):5277–5286. https://doi.org/10.1021/acs.nanolett.2c01178
114. Yin MJ, Yao M, Gao SR et al (2016) Rapid 3D patterning of poly(acrylic acid) ionic hydrogel for miniature pH sensors. Adv Mater 28(7):1394–1399. https://doi.org/10.1002/adma.201504021
115. Ma ZC, Zhang YL, Han B et al (2020) Femtosecond laser programmed artificial musculoskeletal systems. Nat Commun 11(1):4536. https://doi.org/10.1038/s41467-020-18117-0
116. Sun YL, Dong WF, Yang RZ et al (2012) Dynamically tunable protein microlenses. Angew Chem Int Ed 51(7):1558–1562. https://doi.org/10.1002/anie.201105925
117. Ma ZC, Hu XY, Zhang YL et al (2019) Smart compound eyes enable tunable imaging. Adv Funct Mater 29(38):1903340. https://doi.org/10.1002/adfm.201903340
118. Ceylan H, Dogan NO, Yasa IC et al (2021) 3D printed personalized magnetic micromachines from patient blood–derived biomaterials. Sci Adv 7(36):eabh0273. https://doi.org/10.1126/sciadv.abh0273
119. Han D, Lu ZC, Chester SA et al (2018) Micro 3D printing of a temperature-responsive hydrogel using projection micro-stereolithography. Sci Rep 8(1):1963. https://doi.org/10.1038/s41598-018-20385-2
120. Ji ZY, Yan CY, Yu B et al (2019) 3D printing of hydrogel architectures with complex and controllable shape deformation. Adv Mater Technol 4(4):1800713. https://doi.org/10.1002/admt.201800713
121. Shiblee MNI, Ahmed K, Kawakami M (2019) 4D printing of shape-memory hydrogels for soft-robotic functions. Adv Mater Technol 4(8):1900071. https://doi.org/10.1002/admt.201900071
122. Hippler M, Blasco E, Qu JY et al (2019) Controlling the shape of 3D microstructures by temperature and light. Nat Commun 10(1):232. https://doi.org/10.1038/s41467-018-08175-w
123. Mishra AK, Wallin TJ, Pan WY et al (2020) Autonomic perspiration in 3D-printed hydrogel actuators. Sci Robot 5(38):eaaz3918. https://doi.org/10.1126/scirobotics.aaz3918
124. Zhan ZH, Chen L, Duan HG et al (2021) 3D printed ultra-fast photothermal responsive shape memory hydrogel for microrobots. Int J Extreme Manuf 4(1):015302. https://doi.org/10.1088/2631-7990/ac376b
125. Deng CS, Liu YC, Fan XH et al (2023) Femtosecond laser 4D printing of light-driven intelligent micromachines. Adv Funct Mater 33(11):2211473. https://doi.org/10.1002/adfm.202211473
126. Xin C, Ren ZG, Zhang LR et al (2023) Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing. Nat Commun 14(1):4273. https://doi.org/10.1038/s41467-023-40038-x
127. Xu TQ, Zhang JC, Salehizadeh M et al (2019) Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Sci Robot 4(29):eaav4494. https://doi.org/10.1126/scirobotics.aav4494
128. Zhu W, Li JX, Leong YJ et al (2015) 3D-printed artificial microfish. Adv Mater 27(30):4411–4417. https://doi.org/10.1002/adma.201501372
129. Dong M, Wang XP, Chen XZ et al (2020) 3D-printed soft magnetoelectric microswimmers for delivery and differentiation of neuron-like cells. Adv Funct Mater 30(17):1910323. https://doi.org/10.1002/adfm.201910323
130. Hu XH, Yasa IC, Ren ZY et al (2021) Magnetic soft micromachines made of linked microactuator networks. Sci Adv 7(23):abe8436. https://doi.org/10.1126/sciadv.abe8436
131. Li JY, Li XJ, Luo T et al (2018) Development of a magnetic microrobot for carrying and delivering targeted cells. Sci Robot 3(19):eaat8829. https://doi.org/10.1126/scirobotics.aat8829
132. Han D, Farino C, Yang C et al (2018) Soft robotic manipulation and locomotion with a 3D printed electroactive hydrogel. ACS Appl Mater Interfaces 10(21):17512–17518. https://doi.org/10.1021/acsami.8b04250
133. Thakur T, Xavier JR, Cross L et al (2016) Photocrosslinkable and elastomeric hydrogels for bone regeneration. J Biomed Mater Res A 104(4):879–888. https://doi.org/10.1002/jbm.a.35621
134. Ni CJ, Chen D, Yin Y et al (2023) Shape memory polymer with programmable recovery onset. Nature 622(7984):748–753. https://doi.org/10.1038/s41586-023-06520-8
135. Zeng Y, Liu KL, Ding HB et al (2023) Direct laser writing photonic crystal hydrogels with a supramolecular sacrificial scaffold. Small 20(3):e2306524. https://doi.org/10.1002/smll.202306524
136. Hippler M, Weißenbruch K, Richler K et al (2020) Mechanical stimulation of single cells by reversible host-guest interactions in 3D microscaffolds. Sci Adv 6(39):eabc2648. https://doi.org/10.1126/sciadv.abc2648
137. Kaehr B, Shear JB (2008) Multiphoton fabrication of chemically responsive protein hydrogels for microactuation. Proc Natl Acad Sci USA 105(26):8850–8854. https://doi.org/10.1073/pnas.0709571105
138. Deng W, Yamaguchi H, Takashima Y et al (2007) A chemical-responsive supramolecular hydrogel from modified cyclodextrins. Angew Chem Int Ed 119(27):5236–5239. https://doi.org/10.1002/ange.200701272
139. Wen X, Zhang Y, Chen D et al (2022) Reversible shape-shifting of an ionic strength responsive hydrogel enabled by programmable network anisotropy. ACS Appl Mater Interfaces 14(35):40344–40350. https://doi.org/10.1021/acsami.2c11693
140. Xiong Z, Zheng ML, Dong XZ et al (2011) Asymmetric microstructure of hydrogel: two-photon microfabrication and stimuli-responsive behavior. Soft Matter 7(21):10353–10359. https://doi.org/10.1039/c1sm06137b
141. Huang TY, Huang HW, Jin DD et al (2020) Four-dimensional micro-building blocks. Sci Adv 6(3):8219. https://doi.org/10.1126/sciadv.aav8219
142. Wang JY, Jin F, Dong XZ et al (2023) Dual-stimuli cooperative responsive hydrogel microactuators via two-photon lithography. Small 19(40):e2303166. https://doi.org/10.1002/smll.202303166
143. Chen QY, Lv PY, Huang TY et al (2020) Encoding smart microjoints for microcrawlers with enhanced locomotion. Adv Intell Syst 2(3):1900128. https://doi.org/10.1002/aisy.201900128
144. Dai S, Ravi P, Tam KC (2008) pH-responsive polymers: synthesis, properties and applications. Soft Matter 4(3):435–449. https://doi.org/10.1039/b714741d
145. Li H, Go G, Ko SY et al (2016) Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater Struct 25(2):27001–27009. https://doi.org/10.1088/0964-1726/25/2/027001
146. Guan Y, Zhang YJ (2011) PNIPAM microgels for biomedical applications: from dispersed particles to 3D assemblies. Soft Matter 7(14):6375–6384. https://doi.org/10.1039/c0sm01541e
147. Furyk S, Zhang YJ, Ortiz-Acosta D et al (2006) Effects of end group polarity and molecular weight on the lower critical solution temperature of poly(n-isopropylacrylamide). J Polym Sci A Polym Chem 44(4):1492–1501. https://doi.org/10.1002/pola.21256
148. Haq MA, Su YL, Wang DJ (2017) Mechanical properties of PNIPAM based hydrogels: a review. Mater Sci Eng C Mater Biol Appl 70(Pt1):842–855. https://doi.org/10.1016/j.msec.2016.09.081
149. Roppolo I, Chiappone A, Angelini A et al (2017) 3D printable light-responsive polymers. Mater Horiz 4(3):396–401. https://doi.org/10.1039/c7mh00072c
150. Weis P, Wu S (2018) Light-switchable azobenzene-containing macromolecules: from UV to near infrared. Macromol Rapid Comm 39(1):1700220. https://doi.org/10.1002/marc.201700220
151. Nishiguchi A, Zhang H, Schweizerhof S et al (2020) 4D printing of a light-driven soft actuator with programmed printing density. ACS Appl Mater Interfaces 12(10):12176–12185. https://doi.org/10.1021/acsami.0c02781
152. Austria HFM, Subrahmanya TM, Owen S et al (2021) A review on the recent advancements in graphene-based membranes and their applications as stimuli-responsive separation materials. J Mater Chem A 9(38):21510–21531. https://doi.org/10.1039/D1TA04882A
153. Zhang H, Koens L, Lauga E et al (2019) A light-driven microgel rotor. Small 15(46):1903379. https://doi.org/10.1002/smll.201903379
154. Wang ZJ, Li CY, Zhao XY et al (2019) Thermo- and photo-responsive composite hydrogels with programmed deformations. J Mater Chem B 7(10):1674–1678. https://doi.org/10.1039/c8tb02896f
155. Yang ZX, Li Z (2020) Magnetic actuation systems for miniature robots: a review. Adv Intell Syst 2(9):2000082. https://doi.org/10.1002/aisy.202000082
156. Yu JF, Wang B, Du XZ et al (2018) Ultra-extensible ribbon-like magnetic microswarm. Nat Commun 9:3260. https://doi.org/10.1038/s41467-018-05749-6
157. Jin DD, Zhang L (2022) Collective behaviors of magnetic active matter: recent progress toward reconfigurable, adaptive, and multifunctional swarming micro/nanorobots. Acc Chem Res 55(1):98–109. https://doi.org/10.1021/acs.accounts.1c00619
158. Xin C, Jin DD, Li R et al (2022) Rapid and multimaterial 4D printing of shape-morphing micromachines for narrow micronetworks traversing. Small 18(37):2202272. https://doi.org/10.1002/smll.202202272
159. Lantean S, Barrera G, Pirri CF et al (2019) 3D printing of magnetoresponsive polymeric materials with tunable mechanical and magnetic properties by digital light processing. Adv Mater Technol 4(11):1900505. https://doi.org/10.1002/admt.201900505
160. Sun MM, Hao B, Yang SH et al (2022) Exploiting ferrofluidic wetting for miniature soft machines. Nat Commun 13:7919. https://doi.org/10.1038/s41467-022-35646-y
161. Yang LD, Yu JF, Yang SH et al (2022) A survey on swarm microrobotics. IEEE Trans Robot 38(3):1531–1551. https://doi.org/10.1109/TRO.2021.3111788
162. Sun MM, Chan KF, Zhang ZF et al (2022) Magnetic microswarm and fluoroscopy-guided platform for biofilm eradication in biliary stents. Adv Mater 34(34):e2201888. https://doi.org/10.1002/adma.202201888
163. Tottori S, Zhang L, Qiu FM et al (2012) Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv Mater 24(6):811–816. https://doi.org/10.1002/adma.201103818
164. Zhou HJ, Mayorga-Martinez CC, Pane S et al (2021) Magnetically driven micro and nanorobots. Chem Rev 121(8):4999–5041. https://doi.org/10.1021/acs.chemrev.0c01234
165. Xin C, Yang L, Li JW et al (2019) Conical hollow microhelices with superior swimming capabilities for targeted cargo delivery. Adv Mater 31(25):e1808226. https://doi.org/10.1002/adma.201808226
166. Guo R, Sun XY, Yuan B et al (2019) Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable electronics, and thermal transfer printing. Adv Sci 6(20):1901478. https://doi.org/10.1002/advs.201901478
167. Melzer M, Mönch JI, Makarov D et al (2015) Wearable magnetic field sensors for flexible electronics. Adv Mater 27(7):1274–1280. https://doi.org/10.1002/adma.201405027
168. Dong Y, Wang L, Zhang ZF et al (2022) Endoscope-assisted magnetic helical micromachine delivery for biofilm eradication in tympanostomy tube. Sci Adv 8(40):eabq8573. https://doi.org/10.1126/sciadv.abq8573
169. Ji SC, Li XY, Chen QY et al (2021) Enhanced locomotion of shape morphing microrobots by surface coating. Adv Intell Syst 3(7):2000270. https://doi.org/10.1002/aisy.202000270
170. Li C, Lau GC, Yuan H et al (2020) Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Sci Robot 5(49):abb9822. https://doi.org/10.1126/scirobotics.abb9822
171. Dong Y, Wang L, Xia N et al (2022) Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modules. Sci Adv 8(25):eabn8932. https://doi.org/10.1126/sciadv.abn8932
172. Xia N, Jin DD, Pan CF et al (2022) Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization. Nat Commun 13(1):7514. https://doi.org/10.1038/s41467-022-35212-6
173. Xia N, Jin BW, Jin DD et al (2022) Decoupling and reprogramming the wiggling motion of midge larvae using a soft robotic platform. Adv Mater 34(17):e2109126. https://doi.org/10.1002/adma.202109126
174. Peters C, Hoop M, Pane S et al (2016) Degradable magnetic composites for minimally invasive interventions: device fabrication, targeted drug delivery, and cytotoxicity tests. Adv Mater 28(3):533–538. https://doi.org/10.1002/adma.201503112
175. Shi ZJ, Zhao WW, Li SX et al (2017) Self-powered hydrogels induced by ion transport. Nanoscale 9(43):17080–17090. https://doi.org/10.1039/c7nr02962d
176. Yang C, Wang W, Yao C et al (2015) Hydrogel walkers with electro-driven motility for cargo transport. Sci Rep 5(1):13622. https://doi.org/10.1038/srep13622
177. Distler T, Boccaccini AR (2020) 3D printing of electrically conductive hydrogels for tissue engineering and biosensors—a review. Acta Biomater 101:1–13. https://doi.org/10.1016/j.actbio.2019.08.044
178. Cvetkovic C, Raman R, Chan V et al (2014) Three-dimensionally printed biological machines powered by skeletal muscle. Proc Natl Acad Sci USA 111:10125–10130. https://doi.org/10.1073/pnas.1401577111
179. Gelmi A, Schutt CE (2021) Stimuli-responsive biomaterials: scaffolds for stem cell control. Adv Healthc Mater 10(1):2001125. https://doi.org/10.1002/adhm.202001125
180. Clough JM, Weder C, Schrettl S (2021) Mechanochromism in structurally colored polymeric materials. Macromol Rapid Commun 42(1):e2000528. https://doi.org/10.1002/marc.202000528
181. Arsenault AC, Clark TJ, Von Freymann G et al (2006) From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat Mater 5(3):179–184. https://doi.org/10.1038/nmat1588
182. Rajabasadi F, Moreno S, Fichna K et al (2022) Multifunctional 4D-printed sperm-hybrid microcarriers for assisted reproduction. Adv Mater 34(50):e2204257. https://doi.org/10.1002/adma.202204257
183. Magdanz V, Guix M, Hebenstreit F et al (2016) Dynamic polymeric microtubes for the remote-controlled capture, guidance, and release of sperm cells. Adv Mater 28(21):4084–4089. https://doi.org/10.1002/adma.201505487
184. Li R, Jin DD, Pan D et al (2020) Stimuli-responsive actuator fabricated by dynamic asymmetric femtosecond Bessel beam for in situ particle and cell manipulation. ACS Nano 14(5):5233–5242. https://doi.org/10.1021/acsnano.0c00381
185. Goudu SR, Yasa IC, Hu XH et al (2020) Biodegradable untethered magnetic hydrogel milli-grippers. Adv Funct Mater 30(50):2004975. https://doi.org/10.1002/adfm.202004975
186. Zhang YL, Tian Y, Wang H et al (2019) Dual-3D femtosecond laser nanofabrication enables dynamic actuation. ACS Nano 13(4):4041–4048. https://doi.org/10.1021/acsnano.8b08200
187. Yasa IC, Ceylan H, Bozuyuk U et al (2020) Elucidating the interaction dynamics between microswimmer body and immune system for medical microrobots. Sci Robot 5(43):eaaz3867. https://doi.org/10.1126/scirobotics.aaz3867
188. Sun BA, Sun MM, Zhang ZF et al (2023) Magnetic hydrogel micromachines with active release of antibacterial agent for biofilm eradication. Adv Intell Syst 6(2):2300092. https://doi.org/10.1002/aisy.202300092
189. Wang XP, Qin XH, Hu CZ et al (2018) 3D printed enzymatically biodegradable soft helical microswimmers. Adv Funct Mater 28(45):1804107. https://doi.org/10.1002/adfm.201804107
190. Yan XH, Zhou Q, Vincent M et al (2017) Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci Robot 2(12):eaaq1155. https://doi.org/10.1126/scirobotics.aaq1155
191. Shao JX, Abdelghani M, Shen GZ et al (2018) Erythrocyte membrane modified Janus polymeric motors for thrombus therapy. ACS Nano 12(5):4877–4885. https://doi.org/10.1021/acsnano.8b01772
192. Chen SX, Tan ZW, Liao P et al (2023) Biodegradable microrobots for DNA vaccine delivery. Adv Healthc Mater 12(21):e2202921. https://doi.org/10.1002/adhm.202202921
193. Sun J, Zhou SB, Hou P et al (2007) Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res 80A(2):333–341. https://doi.org/10.1002/jbm.a.30909
194. Kobayashi K, Yoon C, Oh SH et al (2019) Biodegradable thermomagnetically responsive soft untethered grippers. ACS Appl Mater Interfaces 11(1):151–159. https://doi.org/10.1021/acsami.8b15646
195. Gugulothu SB, Chatterjee K (2023) Visible light-based 4D-bioprinted tissue scaffold. ACS Macro Lett 12(4):494–502. https://doi.org/10.1021/acsmacrolett.3c00036
196. Ding AX, Sang JL, Ayyagari S et al (2022) 4D biofabrication via instantly generated graded hydrogel scaffolds. Bioact Mater 7(1):324–332. https://doi.org/10.1016/j.bioactmat.2021.05.021
关于本刊
Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。
初审迅速:初审快速退稿,不影响作者投其它期刊。
审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。
收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。
文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。
期刊主页:
http://www.springer.com/journal/42242
http://www.jzus.zju.edu.cn/ (国内可下载全文)
在线投稿地址:
http://www.editorialmanager.com/bdmj/default.aspx
入群交流
围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码