武汉大学陈璞/罗孟成/中南医院张元珍团队 | 基于微流控的趋温性精子分选及体外受精研究

文摘   2024-07-25 11:13   浙江  

内容简介


本研究论文聚焦于微流控芯片技术结合温控用于精子分选。在辅助生殖过程中,选择活力强且功能完好的精子是确保胚胎发育成功的关键步骤。传统的精子样本处理方法,如离心和洗涤,可能引入机械损伤和氧化应激,影响精子质量。尽管微流控技术通过模拟精子自然游动方式以减少这些不利影响,但现有方法尚未经过临床级别的全面验证。受自然环境下输卵管中精子选择机制以及精子对温度梯度的内在响应特性的启发,我们设计并制造了一种微流控装置,该装置在精子分选通道内形成可控的温度梯度。我们系统地研究了人类精子在不同温度条件下的响应,并全面评估了45份人类精子样本通过趋温性选择的效果。研究结果表明,在35~36.5 ℃的温度范围内,与非趋温性选择相比,通过趋温性选择的精子展现出更高的活率((85.25±6.28)% vs.(60.72±1.37)%;P=0.0484),更高的正常形态率((16.42±1.43)% vs.(12.55±0.88)%;P<0.0001),以及更低的DNA碎片率((7.44±0.79)% vs.(10.36±0.72)%;P=0.0485)。此外,精子趋温性表现出物种特异性,小鼠精子在36~37.5 ℃的温度范围内活力最高。体外受精实验进一步证实,利用趋温性选择的精子显著提高了受精率,并改善了从受精卵到囊胚的胚胎发育过程。本研究提出并验证了一种基于微流控技术的趋温性精子选择方法。该方法不仅能够有效选择高活力和功能完好的精子,而且能够降低传统处理方法可能带来的不利影响。这一创新方法有望在未来转化为临床实践,特别是在少精子症和弱精子症患者的体外受精治疗中,以提高受精率和胚胎发育的成功率。


引用本文(点击最下方阅读原文可下载PDF)

Chen S, Chen J, Qin Z, et al., 2024. Microfluidic thermotaxic selection of highly motile sperm and in vitro fertilization. Bio-des Manuf (Early Access). https://doi.org/10.1007/s42242-024-00306-1

文章导读



图1 实验流程图


图2 微流控芯片设计和温控装置搭建


图3 微流控芯片温度分布数值模拟和测量。(a) 微流控芯片温度分布数值模拟;(b) 微流控芯片温度分布红外热成像测量;(c) 精子分选通道温度分布定量表征;(d) 不同温度范围下精子分选通道温度分布(34.0-35.5℃、35.0-36.5℃、36.0-37.5℃和37.0-38.5℃)


图4 未分选、非趋温性分选和趋温性分选组的精子运动轨迹、精子形态和DFI分析的代表性图像


图5 未分选和趋温性分选组的体外受精表征。(a) 受精后第1、3和5天胚胎的代表性明场图像;(b) 从受精到囊胚阶段的早期胚胎发育成功率统计

参考文献

上下滑动以阅览

1 Zubizarreta ME, Xiao S (2020) Bioengineering models of female reproduction. Bio-Des Manuf 3(3):237–251. https://doi.org/10.1007/s42242-020-00082-8

2 Yu SX, Wu Y, Luo H et al (2023) Escaping behavior of sperms on the biomimetic oviductal surface. Anal Chem 95(4):2366–2374. https://doi.org/10.1021/acs.analchem.2c04338

3 Baldini D, Ferri D, Baldini GM et al (2021) Sperm selection for ICSI: do we have a winner? Cells 10(12):3566. https://doi.org/10.3390/cells10123566

4 Giojalas LC, Guidobaldi HA (2020) Getting to and away from the egg, an interplay between several sperm transport mechanisms and a complex oviduct physiology. Mol Cell Endocrinol 518:110954. https://doi.org/10.1016/j.mce.2020.110954

5 Suarez SS (2016) Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res 363(1):185–194. https://doi.org/10.1007/s00441-015-2244-2

6 Nikshad A, Aghlmandi A, Safaralizadeh R et al (2021) Advances of microfluidic technology in reproductive biology. Life Sci 265:118767. https://doi.org/10.1016/j.lfs.2020.118767

7 Dadkhah E, Hajari MA, Abdorahimzadeh S et al (2023) Development of a novel cervix-inspired tortuous microfluidic system for efficient, high-quality sperm selection. Lab Chip 23(13):3080–3091. https://doi.org/10.1039/d3lc00037k

8 Anbari F, Khalili MA, Sultan Ahamed AM et al (2021) Microfluidic sperm selection yields higher sperm quality compared to conventional method in ICSI program: a pilot study. Syst Biol Reprod Med 67(2):137–143. https://doi.org/10.1080/19396368.2020.1837994

9 Nosrati R, Graham PJ, Zhang B et al (2017) Microfluidics for sperm analysis and selection. Nat Rev Urol 14(12):707–730. https://doi.org/10.1038/nrurol.2017.175

10 Hsu CT, Lee CI, Lin FS et al (2023) Live motile sperm sorting device for enhanced sperm-fertilization competency: comparative analysis with density-gradient centrifugation and microfluidic sperm sorting. J Assist Reprod Genet 40(8):1855–1864. https://doi.org/10.1007/s10815-023-02838-4

11 Mirsanei JS, Sheibak N, Zandieh Z et al (2022) Microfluidic chips as a method for sperm selection improve fertilization rate in couples with fertilization failure. Arch Gynecol Obstet 306(3):901–910. https://doi.org/10.1007/s00404-022-06618-w

12 Doostabadi MR, Mangoli E, Marvast LD et al (2022) Microfluidic devices employing chemo- and thermotaxis for sperm selection can improve sperm parameters and function in patients with high DNA fragmentation. Andrologia 54(11):e14623. https://doi.org/10.1111/and.14623

13 Štiavnická M, Abril-Parreño L, Nevoral J et al (2017) Non-invasive approaches to epigenetic-based sperm selection. Med Sci Monit 23:4677–4683. https://doi.org/10.12659/msm.904098

14 Ruiz-Díaz S, Mazzarella R, Navarrete-López P et al (2023) Bull spermatozoa selected by thermotaxis exhibit high DNA integrity, specific head morphometry, and improve ICSI outcome. J Anim Sci Biotechnol 14(1):11. https://doi.org/10.1186/s40104-022-00810-3

15 Berendsen JTW, Kruit SA, Atak N et al (2020) Flow-free microfluidic device for quantifying chemotaxis in spermatozoa. Anal Chem 92(4):3302–3306. https://doi.org/10.1021/acs.analchem.9b05183

16 Ma R, Xie L, Han C et al (2011) In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development. Anal Chem 83(8):2964–2970. https://doi.org/10.1021/ac103063g

17 Cho BS, Schuster TG, Zhu X et al (2003) Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem 75(7):1671–1675. https://doi.org/10.1021/ac020579e

18 Olatunji O, More A (2022) A review of the impact of microfluidics technology on sperm selection technique. Cureus 14(7):e27369. https://doi.org/10.7759/cureus.27369

19 Pérez-Cerezales S, Laguna-Barraza R, Castro AC et al (2018) Sperm selection by thermotaxis improves ICSI outcome in mice. Sci Rep 8(1):2902. https://doi.org/10.1038/s41598-018-21335-8

20 Li Z, Liu W, Qiu T et al (2014) The construction of an interfacial valve-based microfluidic chip for thermotaxis evaluation of human sperm. Biomicrofluidics 8(2):024102. https://doi.org/10.1063/1.4866851

21 Ko YJ, Maeng JH, Hwang SY et al (2018) Design, fabrication, and testing of a microfluidic device for thermotaxis and chemotaxis assays of sperm. SLAS Technol 23(6):507–515. https://doi.org/10.1177/2472630318783948

22 Soto-Heras S, Sakkas D, Miller DJ (2023) Sperm selection by the oviduct: perspectives for male fertility and assisted reproductive technologies. Biol Reprod 108(4):538–552. https://doi.org/10.1093/biolre/ioac224

23 Sequeira RC, Criswell T, Atala A et al (2020) Microfluidic systems for assisted reproductive technologies: advantages and potential applications. Tissue Eng Regen Med 17(6):787–800. https://doi.org/10.1007/s13770-020-00311-2

24 Sharma S, Kabir MA, Asghar W (2022) Selection of healthy sperm based on positive rheotaxis using a microfluidic device. Analyst 147(8):1589–1597. https://doi.org/10.1039/d1an02311j

25 Teves ME, Roldan ERS (2022) Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 102(1):7–60. https://doi.org/10.1152/physrev.00009.2020

26 Vasilescu SA, Ding L, Parast FY et al (2023) Sperm quality metrics were improved by a biomimetic microfluidic selection platform compared to swim-up methods. Microsyst Nanoeng 9:37. https://doi.org/10.1038/s41378-023-00501-7

27 Ahmadkhani N, Hosseini M, Saadatmand M et al (2022) The influence of the female reproductive tract and sperm features on the design of microfluidic sperm-sorting devices. J Assist Reprod Genet 39(1):19–36. https://doi.org/10.1007/s10815-021-02377-w

28 Suarez SS, Wu M (2017) Microfluidic devices for the study of sperm migration. Mol Hum Reprod 23(4):227–234. https://doi.org/10.1093/molehr/gaw039

29 Penny JA, Lymbery RA, Evans JP et al (2022) The use of microfluidic devices in studies of differential sperm chemotaxis. Trends Biotechnol 40(10):1144–1147. https://doi.org/10.1016/j.tibtech.2022.06.014

30 Bahat A, Eisenbach M (2006) Sperm thermotaxis. Mol Cell Endocrinol 252(1–2):115–119. https://doi.org/10.1016/j.mce.2006.03.027

31 Romero-Aguirregomezcorta J, Laguna-Barraza R, Fernández-González R et al (2021) Sperm selection by rheotaxis improves sperm quality and early embryo development. Reproduction 161(3):343–352. https://doi.org/10.1530/rep-20-0364

32 Guler C, Melil S, Ozekici U et al (2021) Sperm selection and embryo development: a comparison of the density gradient centrifugation and microfluidic chip sperm preparation methods in patients with astheno-teratozoospermia. Life 11(9):933. https://doi.org/10.3390/life11090933

33 Bahat A, Caplan SR, Eisenbach M (2012) Thermotaxis of human sperm cells in extraordinarily shallow temperature gradients over a wide range. PLoS ONE 7(7):e41915. https://doi.org/10.1371/journal.pone.0041915

34 Bahat A, Tur-Kaspa I, Gakamsky A et al (2003) Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract. Nat Med 9(2):149–150. https://doi.org/10.1038/nm0203-149

35 Boryshpolets S, Pérez-Cerezales S, Eisenbach M (2015) Behavioral mechanism of human sperm in thermotaxis: a role for hyperactivation. Hum Reprod 30(4):884–892. https://doi.org/10.1093/humrep/dev002

36 Bahat A, Eisenbach M (2010) Human sperm thermotaxis is mediated by phospholipase c and inositol trisphosphate receptor Ca2+ channel. Biol Reprod 82(3):606–616. https://doi.org/10.1095/biolreprod.109.080127

37 Eisenbach M, Giojalas LC (2006) Sperm guidance in mammals—an unpaved road to the egg. Nat Rev Mol Cell Biol 7(4):276–285. https://doi.org/10.1038/nrm1893

38 Ahmad R, Dalziel JE (2020) G protein-coupled receptors in taste physiology and pharmacology. Front Pharmacol 30(11):587664. https://doi.org/10.3389/fphar.2020.587664

39 Cygankiewicz AI, Maslowska A, Krajewska WM et al (2014) Molecular basis of taste sense: involvement of GPCR receptors. Crit Rev Food Sci Nutr 54(6):771–780. https://doi.org/10.1080/10408398.2011.606929

40 Toni LD, Garolla A, Menegazzo M et al (2016) Heat sensing receptor TRPV1 is a mediator of thermotaxis in human spermatozoa. PLoS ONE 11(12):e0167622. https://doi.org/10.1371/journal.pone.0167622

41 Hamano KI, Kawanishi T, Mizuno A et al (2016) Involvement of transient receptor potential vanilloid (TRPV) 4 in mouse sperm thermotaxis. J Reprod Dev 62(4):415–422. https://doi.org/10.1262/jrd.2015-106

42 Fujinoki M (2012) Progesterone-enhanced sperm hyperactivation through IP3–PKC and PKA signals. Reprod Med Biol 12(1):27–33. https://doi.org/10.1007/s12522-012-0137-6

43 Fotiadis D, Liang Y, Filipek S et al (2003) Rhodopsin dimers in native disc membranes. Nature 421(6919):127–128. https://doi.org/10.1038/421127a

44 Dhaka A, Viswanath V, Patapoutian A (2006) TRP ion channels and temperature sensation. Annu Rev Neurosci 29:135–161. https://doi.org/10.1146/annurev.neuro.29.051605.112958

45 Nakao S, Takeo T, Watanabe H et al (2020) Successful selection of mouse sperm with high viability and fertility using microfluidics chip cell sorter. Sci Rep 10(1):8862. https://doi.org/10.1038/s41598-020-65931-z

46 Ruiz-Díaz S, Oseguera-López I, Cuesta-Díaz DDL et al (2020) The presence of D-penicillamine during the in vitro capacitation of stallion spermatozoa prolongs hyperactive-like motility and allows for sperm selection by thermotaxis. Animals 10(9):1467. https://doi.org/10.3390/ani10091467

47 Xiao W, Yu M, Yuan Y et al (2022) Thermotaxis of mammalian sperm. Mol Hum Reprod 28(8):gaac027. https://doi.org/10.1093/molehr/gaac027

48 Yan Y, Zhang B, Fu Q et al (2021) A fully integrated biomimetic microfluidic device for evaluation of sperm response to thermotaxis and chemotaxis. Lab Chip 21(2):310–318. https://doi.org/10.1039/d0lc00845a


关于本刊

Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。


初审迅速:初审快速退稿,不影响作者投其它期刊。

审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。

收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。

文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。


期刊主页:

http://www.springer.com/journal/42242

http://www.jzus.zju.edu.cn/ (国内可下载全文)

在线投稿地址:

http://www.editorialmanager.com/bdmj/default.aspx


入群交流

围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码

生物设计与制造BDM
论文导读、领域资讯
 最新文章