1. Rivnay J, Wang HL, Fenno L et al (2017) Next-generation probes, particles, and proteins for neural interfacing. Sci Adv 3(6):e1601649. https://doi.org/10.1126/sciadv.1601649
2. Chiang CH, Won SM, Orsborn AL et al (2020) Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci Transl Med 12(538):eaay4682. https://doi.org/10.1126/scitranslmed.aay4682
3. Jiang Y, Ji SB, Sun J et al (2023) A universal interface for plug-and-play assembly of stretchable devices. Nature 614(7948):456–462. https://doi.org/10.1038/s41586-022-05579-z
4. Zhang YC, Zheng N, Cao Y et al (2019) Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Sci Adv 5(4):eaaw1066. https://doi.org/10.1126/sciadv.aaw1066
5. Boyden ES (2023) A history of optogenetics: the development of tools for controlling brain circuits with light. F1000 Biol Rep 3(1):11. https://doi.org/10.3410/B3-11
6. Atherton E, Hu Y, Brown S et al (2022) A 3D in vitro model of the device tissue interface: functional and structural symptoms of innate neuroinflammation are mitigated by antioxidant ceria nanoparticles. J Neur Eng 19(3):036004. https://doi.org/10.1088/1741-2552/ac6908
7. Ahmadabadi HY, Yu K, Kizhakkedathu JN (2020) Surface modification approaches for prevention of implant associated infections. Colloid Surf B Biointerface 193:111116. https://doi.org/10.1016/j.colsurfb.2020.111116
8. Bettinger CJ, Ecker M, Yoshida Kozai TD et al (2020) Recent advances in neural interfaces materials chemistry to clinical translation. MRS Bull 45(8):655–668. https://doi.org/10.1557/mrs.2020.195
9. Minev IR, Musienko P, Hirsch A et al (2015) Electronic dura mater for long-term multimodal neural interfaces. Science 347(6218):159–163. https://doi.org/10.1126/science.1260318
10. Balakrishnan G, Song J, Mou CC et al (2021) Recent progress in materials chemistry to advance flexible bioelectronics in medicine. Adv Mater 34(10):e2106787. https://doi.org/10.1002/adma.202106787
11. Liu LL, Liu YF, Tang RT et al (2022) Stable and low resistance polydopamine methacrylamide polyacrylamide hydrogel for brain computer interface. Sci China Mater 65(8):2298–2308. https://doi.org/10.1007/s40843-022-2145-3
12. Yuk H, Lu BY, Zhao XH (2019) Hydrogel bioelectronics. Chem Soc Rev 48(6):1642–1667. https://doi.org/10.1039/c8cs00595h
13. Zhang DH, Chen Q, Shi C et al (2021) Dealing with the foreign-body response to implanted biomaterials: strategies and applications of new materials. Adv Funct Mater 31(6):2007226. https://doi.org/10.1002/adfm.202170040
14. Gregory DA, Tripathi L, Fricker ATR et al (2021) Bacterial cellulose: a smart biomaterial with diverse applications. Mater Sci Eng R Rep 145:100623. https://doi.org/10.1016/j.mser.2021.100623
15. Liu W, Du HS, Zhang MM et al (2020) Bacterial cellulose based composite scaffolds for biomedical applications: a review. ACS Sustain Chem Eng 8(20):7536–7562. https://doi.org/10.1021/acssuschemeng.0c00125
16. Wahid F, Huang LH, Zhao XQ et al (2021) Bacterial cellulose and its potential for biomedical applications. Biotechnol Adv 53:107856. https://doi.org/10.1016/j.biotechadv.2021.107856
17. Shao W, Liu H, Wang SX et al (2016) Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydr Polym 145:114–120. https://doi.org/10.1016/j.carbpol.2016.02.065
18. Zheng L, Li SS, Luo JW et al (2020) Latest advances on bacterial cellulose based antibacterial materials as wound dressings. Front Bioeng Biotechnol 8:593768. https://doi.org/10.3389/fbioe.2020.593768
19. Zhang YN, Chen YJ, Li X et al (2021) Bacterial cellulose hydrogel: a promising electrolyte for flexible zinc-air batteries. J Power Sour 482:228963. https://doi.org/10.1016/j.jpowsour.2020.228963
20. Pan XS, Li J, Ma N et al (2023) Bacterial cellulose hydrogel for sensors. Chem Eng J 461:142062. https://doi.org/10.1016/j.cej.2023.142062
21. Hu Y, Chen CT, Yang LY et al (2019) Handy purifier based on bacterial cellulose and Ca montmorillonite composites for efficient removal of dyes and antibiotics. Carbohydr Polym 222:115017. https://doi.org/10.1016/j.carbpol.2019.115017
22. Ozseker EE, Akkaya A (2016) Development of a new antibacterial biomaterial by tetracycline immobilization on calcium alginate beads. Carbohydr Polym 151:441–451. https://doi.org/10.1016/j.carbpol.2016.05.073
23. Dang TT, Bratlie KM, Bogatyrev SR et al (2011) Spatiotemporal effects of a controlled release anti inflammatory drug on the cellular dynamics of host response. Biomaterials 32(19):4464–4470. https://doi.org/10.1016/j.biomaterials.2011.02.048
24. Boehler C, Kleber C, Martini N et al (2017) Actively controlled release of dexamethasone from neural microelectrodes in a chronic in vivo study. Biomaterials 129:176–187. https://doi.org/10.1016/j.biomaterials.2017.03.019
25. Liu W, Du H, Zheng T et al (2021) Biomedical applications of bacterial cellulose based composite hydrogels. Curr Med Chem 28(40):8319–8332. https://doi.org/10.2174/0929867328666210412124444
26. Zhang KY, Feng Q, Fang ZW et al (2021) Structurally dynamic hydrogels for biomedical applications: pursuing a fine balance between macroscopic stability and microscopic dynamics. Chem Rev 121(18):11149–11193. https://doi.org/10.1021/acs.chemrev.1c00071
27. Ji BW, Xie ZQ, Hong W et al (2020) Stretchable Parylene-C electrodes enabled by serpentine structures on arbitrary elastomers by silicone rubber adhesive. J Materiomics 6(2):330–338. https://doi.org/10.1016/j.jmat.2019.11.006
28. Ji BW, Guo ZJ, Wang MH et al (2018) Flexible polyimide-based hybrid opto-electric neural interface with 16 channels of micro-LEDs and electrodes. Microsyst Nanoeng 4(1):27. https://doi.org/10.1038/s41378-018-0027-0