西北工业大学黄维院士/李鹏教授/吉博文副教授团队 | 抗菌抗炎脑机接口柔性电极

文摘   2024-08-06 21:04   浙江  

内容简介


本研究论文聚焦侵入式脑机接口的长期稳定使用。侵入式脑机接口通过直接将电极植入到大脑的灰质或大脑皮层获取高质量的神经信号。然而, 植入电极所导致的不可避免的伤口带来了与外源性物质暴露相关的细菌感染和炎症反应风险。此外, 伤口区域的炎症可能会因细菌感染而急剧恶化。这些后果不仅会导致脑机接口信号质量的衰退甚至消失, 还可能威胁患者生命。本研究通过以可缓释药物的水凝胶为柔性基底,集成蛇形阵列,提出了一种兼具脑电信号监测和药物缓释治疗的脑机接口构建方法。基于此,以抗生素和抗炎药物为模型,本研究制备了负载四环素 (TC) 和地塞米松 (DEX) 的细菌纤维素 (BC) 水凝胶。进一步地, 通过将负载药物的BC水凝胶与九通道蛇形阵列集成, 开发了抗菌抗炎脑机接口柔性电极, 并将其用于大鼠模型中记录皮层脑电图 (ECoG) 信号。该柔性电极可与大脑皮层共形贴附, 实现高分辨率脑电信号采集。此外,负载的药物TC和DEX可以从脑机接口电极中缓慢释放, 有效抑制革兰阴性和阳性细菌的生长以及炎症反应。本研究为药物递送电极的开发以及侵入式脑机接口的长期稳定使用奠定了基础。


引用本文(点击最下方阅读原文可下载PDF)

Qin R, Li T, Tan Y, et al., 2024. A drug-loaded flexible substrate improves the performance of conformal cortical electrodes. Bio-des Manuf 7(4):399–412. https://doi.org/10.1007/s42242-024-00299-x

文章导读



图1 构建载药BC水凝胶


图2 载药BC水凝胶的体外抗菌性能


图3 抗菌抗炎脑机接口柔性电极的设计和脑电信号记录性能


图4 脑机接口柔性电极的体内抗菌抗炎性能

参考文献

上下滑动以阅览

1. Rivnay J, Wang HL, Fenno L et al (2017) Next-generation probes, particles, and proteins for neural interfacing. Sci Adv 3(6):e1601649. https://doi.org/10.1126/sciadv.1601649

2. Chiang CH, Won SM, Orsborn AL et al (2020) Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci Transl Med 12(538):eaay4682. https://doi.org/10.1126/scitranslmed.aay4682

3. Jiang Y, Ji SB, Sun J et al (2023) A universal interface for plug-and-play assembly of stretchable devices. Nature 614(7948):456–462. https://doi.org/10.1038/s41586-022-05579-z

4. Zhang YC, Zheng N, Cao Y et al (2019) Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Sci Adv 5(4):eaaw1066. https://doi.org/10.1126/sciadv.aaw1066

5. Boyden ES (2023) A history of optogenetics: the development of tools for controlling brain circuits with light. F1000 Biol Rep 3(1):11. https://doi.org/10.3410/B3-11

6. Atherton E, Hu Y, Brown S et al (2022) A 3D in vitro model of the device tissue interface: functional and structural symptoms of innate neuroinflammation are mitigated by antioxidant ceria nanoparticles. J Neur Eng 19(3):036004. https://doi.org/10.1088/1741-2552/ac6908

7. Ahmadabadi HY, Yu K, Kizhakkedathu JN (2020) Surface modification approaches for prevention of implant associated infections. Colloid Surf B Biointerface 193:111116. https://doi.org/10.1016/j.colsurfb.2020.111116

8. Bettinger CJ, Ecker M, Yoshida Kozai TD et al (2020) Recent advances in neural interfaces materials chemistry to clinical translation. MRS Bull 45(8):655–668. https://doi.org/10.1557/mrs.2020.195

9. Minev IR, Musienko P, Hirsch A et al (2015) Electronic dura mater for long-term multimodal neural interfaces. Science 347(6218):159–163. https://doi.org/10.1126/science.1260318

10. Balakrishnan G, Song J, Mou CC et al (2021) Recent progress in materials chemistry to advance flexible bioelectronics in medicine. Adv Mater 34(10):e2106787. https://doi.org/10.1002/adma.202106787

11. Liu LL, Liu YF, Tang RT et al (2022) Stable and low resistance polydopamine methacrylamide polyacrylamide hydrogel for brain computer interface. Sci China Mater 65(8):2298–2308. https://doi.org/10.1007/s40843-022-2145-3

12. Yuk H, Lu BY, Zhao XH (2019) Hydrogel bioelectronics. Chem Soc Rev 48(6):1642–1667. https://doi.org/10.1039/c8cs00595h

13. Zhang DH, Chen Q, Shi C et al (2021) Dealing with the foreign-body response to implanted biomaterials: strategies and applications of new materials. Adv Funct Mater 31(6):2007226. https://doi.org/10.1002/adfm.202170040

14. Gregory DA, Tripathi L, Fricker ATR et al (2021) Bacterial cellulose: a smart biomaterial with diverse applications. Mater Sci Eng R Rep 145:100623. https://doi.org/10.1016/j.mser.2021.100623

15. Liu W, Du HS, Zhang MM et al (2020) Bacterial cellulose based composite scaffolds for biomedical applications: a review. ACS Sustain Chem Eng 8(20):7536–7562. https://doi.org/10.1021/acssuschemeng.0c00125

16. Wahid F, Huang LH, Zhao XQ et al (2021) Bacterial cellulose and its potential for biomedical applications. Biotechnol Adv 53:107856. https://doi.org/10.1016/j.biotechadv.2021.107856

17. Shao W, Liu H, Wang SX et al (2016) Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydr Polym 145:114–120. https://doi.org/10.1016/j.carbpol.2016.02.065

18. Zheng L, Li SS, Luo JW et al (2020) Latest advances on bacterial cellulose based antibacterial materials as wound dressings. Front Bioeng Biotechnol 8:593768. https://doi.org/10.3389/fbioe.2020.593768

19. Zhang YN, Chen YJ, Li X et al (2021) Bacterial cellulose hydrogel: a promising electrolyte for flexible zinc-air batteries. J Power Sour 482:228963. https://doi.org/10.1016/j.jpowsour.2020.228963

20. Pan XS, Li J, Ma N et al (2023) Bacterial cellulose hydrogel for sensors. Chem Eng J 461:142062. https://doi.org/10.1016/j.cej.2023.142062

21. Hu Y, Chen CT, Yang LY et al (2019) Handy purifier based on bacterial cellulose and Ca montmorillonite composites for efficient removal of dyes and antibiotics. Carbohydr Polym 222:115017. https://doi.org/10.1016/j.carbpol.2019.115017

22. Ozseker EE, Akkaya A (2016) Development of a new antibacterial biomaterial by tetracycline immobilization on calcium alginate beads. Carbohydr Polym 151:441–451. https://doi.org/10.1016/j.carbpol.2016.05.073

23. Dang TT, Bratlie KM, Bogatyrev SR et al (2011) Spatiotemporal effects of a controlled release anti inflammatory drug on the cellular dynamics of host response. Biomaterials 32(19):4464–4470. https://doi.org/10.1016/j.biomaterials.2011.02.048

24. Boehler C, Kleber C, Martini N et al (2017) Actively controlled release of dexamethasone from neural microelectrodes in a chronic in vivo study. Biomaterials 129:176–187. https://doi.org/10.1016/j.biomaterials.2017.03.019

25. Liu W, Du H, Zheng T et al (2021) Biomedical applications of bacterial cellulose based composite hydrogels. Curr Med Chem 28(40):8319–8332. https://doi.org/10.2174/0929867328666210412124444

26. Zhang KY, Feng Q, Fang ZW et al (2021) Structurally dynamic hydrogels for biomedical applications: pursuing a fine balance between macroscopic stability and microscopic dynamics. Chem Rev 121(18):11149–11193. https://doi.org/10.1021/acs.chemrev.1c00071

27. Ji BW, Xie ZQ, Hong W et al (2020) Stretchable Parylene-C electrodes enabled by serpentine structures on arbitrary elastomers by silicone rubber adhesive. J Materiomics 6(2):330–338. https://doi.org/10.1016/j.jmat.2019.11.006

28. Ji BW, Guo ZJ, Wang MH et al (2018) Flexible polyimide-based hybrid opto-electric neural interface with 16 channels of micro-LEDs and electrodes. Microsyst Nanoeng 4(1):27. https://doi.org/10.1038/s41378-018-0027-0


关于本刊

Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。


初审迅速:初审快速退稿,不影响作者投其它期刊。

审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。

收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。

文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。


期刊主页:

http://www.springer.com/journal/42242

http://www.jzus.zju.edu.cn/ (国内可下载全文)

在线投稿地址:

http://www.editorialmanager.com/bdmj/default.aspx


入群交流

围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码

生物设计与制造BDM
论文导读、领域资讯
 最新文章