内容简介
本研究论文结合多种表面改性技术在低模量钛合金表面构建功能复合改性层,利用含有纳米银和生物陶瓷的纳米管提升耐磨性、抗菌性能和体外生物相容性。理想的钛基关节植入物应避免应力屏蔽, 且具有良好的生物活性和抗感染性能。为满足这些要求, 研究人员以低弹性模量合金Ti–35Nb–2Ta–3Zr为基体, 采用阳极氧化、沉积和旋涂等方法制备含有生物陶瓷和银离子的功能涂层, 并将其涂覆在TiO2纳米管 ((80 ± 20) nm 和(150 ± 40) nm) 表面。研究了生物陶瓷 (nano-β-TCP, micro-HA, meso-CaSiO3) 和Ag纳米颗粒 ((50 ± 20) nm) 对纳米管的抗菌活性、摩擦、腐蚀和早期体外成骨行为的影响。摩擦和腐蚀结果表明, 磨损率和腐蚀速率与纳米管表面形貌密切相关。由于黏着磨损和磨粒磨损, 生物陶瓷micro-HA 表现出优异的耐磨性, 磨损率为(1.26 ± 0.06)×10–3 mm3/(N m)。生物陶瓷meso-CaSiO3显示出良好的细胞黏附、增殖能力和碱性磷酸酶活性。含有纳米银的涂层具有良好的抗菌活性, 对大肠杆菌的抗菌率 ≥ 89.5%。研究结果表明, 该功能涂层具有促进成骨的潜力。
引用本文(点击最下方阅读原文可下载PDF)
Wang Q, Liu J, Wu H, et al., 2024. Enhanced wear resistance, antibacterial performance, and biocompatibility using nanotubes containing nano-Ag and bioceramics in vitro. Bio-des Manuf 7(5):670–686. https://doi.org/10.1007/s42242-024-00279-1
文章导读
图1 (a) 功能复合改性层制备流程示意图;(b) TiNT、(c) TiNTAg、(d) TiNTAg@HA、(e) TiNTAg@CaSiO3、(f) TiNTAg@β-TCP的形貌图;(g-h) 银纳米颗粒在纳米管中的明场像;(i) 银纳米颗粒的高分辨透射图像;(j)银纳米颗粒的选区电子衍射图谱
图2 (a) 样品在SBF溶液中摩擦腐蚀的摩擦系数(虚线表示摩擦过程中各涂层的失效点);(b) 磨道截面图;(c)磨损率;(d-i) βTi、TiNT、TiNTAg、TiNTAg@HA、TiNTAg@CaSiO3、TiNTAg@β-TCP摩擦腐蚀后的三维表面形貌
图3 (a-b) βTi、(c-d) TiNT、(e-f) TiNTAg、(g-h) TiNTAg@HA、(i-j) TiNTAg@CaSiO3、(k-l) TiNTAg@β-TCP的磨痕形貌;(m) TiNT和(n) TiNTAg@HA摩擦腐蚀示意图
图4 (a) 钙黄绿素荧光染色活细胞图;(b) CCK-8法评估MC3T3-E1细胞1、3和5天的细胞活性
图5 (a) 各样品在大肠杆菌中孵育12h的抑菌圈;(b) 各样品对大肠杆菌的抑菌率;(c) 平板涂布后大肠杆菌生长情况
参考文献
上下滑动以阅览
1. Guo LY, Naghavi SA, Wang ZQ et al (2022) On the design evolution of hip implants: a review. Mater Des 216:110552. https://doi.org/10.1016/j.matdes.2022.110552
2. Wang MC, Bu FX, Zhou CJ et al (2020) Bonding performance and mechanism of a heat-resistant composite precursor adhesive (RT-1000C) for TC4 titanium alloy. J Micromech Mol Phys 5(4):2050016. https://doi.org/10.1142/S2424913020500162
3. Zhang TL, Liu CT (2022) Design of titanium alloys by additive manufacturing: a critical review. Adv Powder Mater 1(1):100014. https://doi.org/10.1016/j.apmate.2021.11.001
4. Li XZ, Huang QL, Liu L et al (2018) Reduced inflammatory response by incorporating magnesium into porous TiO2 coating on titanium substrate. Colloid Surf B Biointerfaces 171:276–284. https://doi.org/10.1016/j.colsurfb.2018.07.032
5. Lan XD, Wu H, Liu Y et al (2016) Microstructures and tribological properties of laser cladded Ti-based metallic glass composite coatings. Mater Charact 120:82–89. https://doi.org/10.1016/j.matchar.2016.08.026
6. Cai DG, Zhao XT, Yang L et al (2021) A novel biomedical titanium alloy with high antibacterial property and low elastic modulus. J Mater Sci Technol 81:13–25. https://doi.org/10.1016/j.jmst.2021.01.015
7. Wang JC, Liu YJ, Liang SX et al (2022) Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder. J Mater Sci Technol 105:1–16. https://doi.org/10.1016/j.jmst.2021.07.021
8. Hu J, Ren YJ, Huang QL et al (2021) Microstructure and corrosion behavior of Ti-Nb coatings on NiTi substrate fabricated by laser cladding. Coatings 11(5):597. https://doi.org/10.3390/coatings11050597
9. Chen ZJ, Liu Y, Wu H et al (2015) Microstructures and wear properties of surface treated Ti–36Nb–2Ta–3Zr–0.35O alloy by electron beam melting (EBM). Appl Surf Sci 357:2347–2354. https://doi.org/10.1016/j.apsusc.2015.09.240
10. Zhang T, Wei DX, Lu EY et al (2022) Microstructure evolution and deformation mechanism of α+β dual-phase Ti-xNb-yTa-2Zr alloys with high performance. J Mater Sci Technol 131:68–81. https://doi.org/10.1016/j.jmst.2022.04.052
11. Ren YJ, Han B, Wu H et al (2022) Copper segregation-mediated formation of nanotwins and 9R phases in titanium alloy produced by laser powder bed fusion. Scripta Mater 224:115115. https://doi.org/10.1016/j.scriptamat.2022.115115
12. Guo YY, Chen DS, Lu WJ et al (2013) Corrosion resistance and in vitro response of a novel Ti35Nb2Ta3Zr alloy with a low Young’s modulus. Biomed Mater 8(5):055004. https://doi.org/10.1088/1748-6041/8/5/055004
13. Shao LF, Du YH, Dai K et al (2021) β-Ti alloys for orthopedic and dental applications: a review of progress on improvement of properties through surface modification. Coatings 11(12):1446. https://doi.org/10.3390/coatings11121446
14. Feng JY, Wei DX, Zhang PL et al (2023) Preparation of TiNbTaZrMo high-entropy alloy with tunable Young’s modulus by selective laser melting. J Manuf Process 85:160–165. https://doi.org/10.1016/j.jmapro.2022.11.046
15. Mao CY, Yu WJ, Jin M et al (2022) Mechanobiologically optimized Ti-35Nb-2Ta-3Zr improves load transduction and enhances bone remodeling in tilted dental implant therapy. Bioact Mater 16:15–26. https://doi.org/10.1016/j.bioactmat.2022.03.005
16. Fang YJ, Wang QG, Yang Z et al (2022) An efficient approach to endow TiNbTaZr implant with osteogenic differentiation and antibacterial activity in vitro. Mater Des 221:110987. https://doi.org/10.1016/j.matdes.2022.110987
17. Gu H, Ding ZH, Yang Z et al (2019) Microstructure evolution and electrochemical properties of TiO2/Ti-35Nb-2Ta-3Zr micro/nano-composites fabricated by friction stir processing. Mater Des 169:107680. https://doi.org/10.1016/j.matdes.2019.107680
18. Huang QL, Li XZ, Liu T et al (2018) Enhanced SaOS-2 cell adhesion, proliferation and differentiation on Mg-incorporated micro/nano-topographical TiO2 coatings. Appl Surf Sci 447:767–776. https://doi.org/10.1016/j.apsusc.2018.04.095
19. Liu WT, Liang LX, Liu B et al (2021) The response of macrophages and their osteogenic potential modulated by micro/nano-structured Ti surfaces. Colloid Surf B Biointerfaces 205:111848. https://doi.org/10.1016/j.colsurfb.2021.111848
20. Li XZ, Huang QL, Elkhooly TA et al (2018) Effects of titanium surface roughness on the mediation of osteogenesis via modulating the immune response of macrophages. Biomed Mater 13(4):045013. https://doi.org/10.1088/1748-605X/aabe33
21. Huang QL, Li XZ, Elkhooly TA et al (2018) The osteogenic, inflammatory and osteo-immunomodulatory performances of biomedical Ti-Ta metal–metal composite with Ca- and Si-containing bioceramic coatings. Colloid Surf B Biointerfaces 169:49–59. https://doi.org/10.1016/j.colsurfb.2018.05.010
22. Huang QL, Li XZ, Elkhooly TA et al (2018) The Cu-containing TiO2 coatings with modulatory effects on macrophage polarization and bactericidal capacity prepared by micro-arc oxidation on titanium substrates. Colloid Surf B Biointerfaces 170:242–250. https://doi.org/10.1016/j.colsurfb.2018.06.020
23. Wang QG, Zhou P, Liu SF et al (2020) Multi-scale surface treatments of titanium implants for rapid osseointegration: a review. Nanomaterials 10(6):1244. https://doi.org/10.3390/nano10061244
24. Yu WQ, Qian C, Jiang XQ et al (2015) Mechanisms of stem cell osteogenic differentiation on TiO2 nanotubes. Colloid Surf B Biointerfaces 136:779–785. https://doi.org/10.1016/j.colsurfb.2015.10.019
25. Alves SA, Patel SB, Sukotjo C et al (2017) Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: a promising strategy for an efficient biofunctional implant surface. Appl Surf Sci 399:682–701. https://doi.org/10.1016/j.apsusc.2016.12.105
26. Zhang YN, Wang K, Song Y et al (2020) Ca substitution of Sr in Sr-doped TiO2 nanotube film on Ti surface for enhanced osteogenic activity. Appl Surf Sci 528:147055. https://doi.org/10.1016/j.apsusc.2020.147055
27. Shen K, Tang Q, Fang XT et al (2020) The sustained release of dexamethasone from TiO2 nanotubes reinforced by chitosan to enhance osteoblast function and anti-inflammation activity. Mater Sci Eng C Mater Biol Appl 116:111241. https://doi.org/10.1016/j.msec.2020.111241
28. Ferraris S, Spriano S (2016) Antibacterial titanium surfaces for medical implants. Mater Sci Eng C Mater Biol Appl 61:965–978. https://doi.org/10.1016/j.msec.2015.12.062
29. Yang Z, Gu H, Sha G et al (2018) TC4/Ag metal matrix nanocomposites modified by friction stir processing: surface characterization, antibacterial property, and cytotoxicity in vitro. ACS Appl Mater Interfaces 10(48):41155–41166. https://doi.org/10.1021/acsami.8b16343
30. Mei SL, Wang HY, Wang W et al (2014) Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials 35(14):4255–4265. https://doi.org/10.1016/j.biomaterials.2014.02.005
31. Liu SF, Wang QG, Liu W et al (2021) Multi-scale hybrid modified coatings on titanium implants for non-cytotoxicity and antibacterial properties. Nanoscale 13(23):10587–10599. https://doi.org/10.1039/d1nr02459k
32. Huang Y, Xu ZW, Zhang XJ et al (2017) Nanotube-formed Ti substrates coated with silicate/silver co-doped hydroxyapatite as prospective materials for bone implants. J Alloy Compd 697:182–199. https://doi.org/10.1016/j.jallcom.2016.12.139
33. Huang Y, Han SG, Pang XF et al (2013) Electrodeposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications. Appl Surf Sci 271:299–302. https://doi.org/10.1016/j.apsusc.2013.01.187
34. Samanta SK, Devi KB, Das P et al (2019) Metallic ion doped tri-calcium phosphate ceramics: effect of dynamic loading on in vivo bone regeneration. J Mech Behav Biomed Mater 96:227–235. https://doi.org/10.1016/j.jmbbm.2019.04.051
35. Schmidt-Stein F, Thiemann S, Berger S et al (2010) Mechanical properties of anatase and semi-metallic TiO2 nanotubes. Acta Mater 58(19):6317–6323. https://doi.org/10.1016/j.actamat.2010.07.053
36. Ha Y, Yang J, Tao F et al (2018) Phase-transited lysozyme as a universal route to bioactive hydroxyapatite crystalline film. Adv Funct Mater 28(4):1704476. https://doi.org/10.1002/adfm.201704476
37. Sanosh KP, Chu MC, Balakrishnan A et al (2010) Sol–gel synthesis of pure nano sized β-tricalcium phosphate crystalline powders. Curr Appl Phys 10(1):68–71. https://doi.org/10.1016/j.cap.2009.04.014
38. Lu X, Zhang DW, Xu W et al (2020) The effect of Cu content on corrosion, wear and tribocorrosion resistance of Ti-Mo-Cu alloy for load-bearing bone implants. Corros Sci 177:109007. https://doi.org/10.1016/j.corsci.2020.109007
39. Cui SW, Yin XY, Yu QL et al (2015) Polypyrrole nanowire/TiO2 nanotube nanocomposites as photoanodes for photocathodic protection of Ti substrate and 304 stainless steel under visible light. Corros Sci 98:471–477. https://doi.org/10.1016/j.corsci.2015.05.059
40. Carlson C, Hussain SM, Schrand AM et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619. https://doi.org/10.1021/jp712087m
41. Xu W, Yu AH, Lu X et al (2020) Synergistic interactions between wear and corrosion of Ti-16Mo orthopedic alloy. J Mater Res Technol 9(5):9996–10003. https://doi.org/10.1016/j.jmrt.2020.06.095
42. Alves SA, Rossi AL, Ribeiro AR et al (2017) Tribo-electrochemical behavior of bio-functionalized TiO2 nanotubes in artificial saliva: understanding of degradation mechanisms. Wear 384–385:28–42. https://doi.org/10.1016/j.wear.2017.05.005
43. Chan CW, Lee S, Smith G et al (2016) Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen. Appl Surf Sci 367:80–90. https://doi.org/10.1016/j.apsusc.2016.01.091
44. Wang HD, He PF, Ma GZ et al (2018) Tribological behavior of plasma sprayed carbon nanotubes reinforced TiO2 coatings. J Eur Ceram Soc 38(10):3660–3672. https://doi.org/10.1016/j.jeurceramsoc.2018.04.019
45. Wang GQ, Wang SR, Yang XF et al (2021) Fretting wear and mechanical properties of surface-nanostructural titanium alloy bone plate. Surf Coat Tech 405:126512. https://doi.org/10.1016/j.surfcoat.2020.126512
46. Cui YW, Chen LY, Chu YH et al (2023) Metastable pitting corrosion behavior and characteristics of passive film of laser powder bed fusion produced Ti–6Al–4V in NaCl solutions with different concentrations. Corros Sci 215:111017. https://doi.org/10.1016/j.corsci.2023.111017
47. Mazare A, Totea G, Burnei C et al (2016) Corrosion, antibacterial activity and haemocompatibility of TiO2 nanotubes as a function of their annealing temperature. Corros Sci 103:215–222. https://doi.org/10.1016/j.corsci.2015.11.021
48. Çırak BB, Karadeniz SM, Kılınç T et al (2017) Synthesis, surface properties, crystal structure and dye sensitized solar cell performance of TiO2 nanotube arrays anodized under different voltages. Vacuum 144:183–189. https://doi.org/10.1016/j.vacuum.2017.07.037
49. Wu SX, Wang SR, Liu WT et al (2019) Microstructure and properties of TiO2 nanotube coatings on bone plate surface fabrication by anodic oxidation. Surf Coat Tech 374:362–373. https://doi.org/10.1016/j.surfcoat.2019.06.019
50. Foldbjerg R, Olesen P, Hougaard M et al (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190(2):156–162. https://doi.org/10.1016/j.toxlet.2009.07.009
51. Siek D, Ślósarczyk A, Przekora A et al (2017) Evaluation of antibacterial activity and cytocompatibility of α-TCP based bone cements with silver-doped hydroxyapatite and CaCO3. Ceram Int 43(16):13997–14007. https://doi.org/10.1016/j.ceramint.2017.07.131
52. Lee DK, Ki MR, Kim EH et al (2021) Biosilicated collagen/beta-tricalcium phosphate composites as a BMP-2-delivering bone-graft substitute for accelerated craniofacial bone regeneration. Biomater Res 25(1):2–11. https://doi.org/10.1186/s40824-021-00214-w
53. Yu JM, Li K, Zheng XB et al (2013) In vitro and in vivo evaluation of zinc-modified Ca-Si-based ceramic coating for bone implants. PLoS ONE 8(3):e57564. https://doi.org/10.1371/journal.pone.0057564
54. Liang LX, Huang QL, Wu H et al (2022) Engineering nano-structures with controllable dimensional features on micro-topographical titanium surfaces to modulate the activation degree of M1 macrophages and their osteogenic potential. J Mater Sci Technol 96:167–178. https://doi.org/10.1016/j.jmst.2021.03.078
55. Liang LX, Huang QL, Wu H et al (2021) Stimulation of in vitro and in vivo osteogenesis by Ti-Mg alloys with the sustained-release function of magnesium ions. Colloid Surf B Biointerfaces 197:111360. https://doi.org/10.1016/j.colsurfb.2020.111360
56. Kang MH, Lee SJ, Lee MH (2020) Bone remodeling effects of Korean Red Ginseng extracts for dental implant applications. J Ginseng Res 44(6):823–832. https://doi.org/10.1016/j.jgr.2020.05.003
57. Ando Y, Miyamoto H, Noda I et al (2010) Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion. Mater Sci Eng C Mater Biol Appl 30(1):175–180. https://doi.org/10.1016/j.msec.2009.09.015
58. Xue WC, Liu XY, Zheng XB et al (2005) In vivo evaluation of plasma-sprayed wollastonite coating. Biomaterials 26(17):3455–3460. https://doi.org/10.1016/j.biomaterials.2004.09.027
关于本刊
Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。
初审迅速:初审快速退稿,不影响作者投其它期刊。
审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。
收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。
文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。
期刊主页:
http://www.springer.com/journal/42242
http://www.jzus.zju.edu.cn/ (国内可下载全文)
在线投稿地址:
http://www.editorialmanager.com/bdmj/default.aspx
入群交流
围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码