香港城市大学于欣格团队 | 通过剪纸技术实现用于温度调节的柔性共形电子

文摘   2024-08-19 18:19   浙江  

内容简介


本研究论文聚焦通过剪纸技术实现用于温度调节的柔性共形电子。在节约能源与保证生活质量的同时, 将热电设备 (TEDs) 应用于个性化的体温调节具有非常大的吸引力。直接贴附在皮肤上的热电设备能够显著降低因冷却整个环境而产生的能量浪费。然而, 面对人体皮肤呈现的极端动态的几何形状和应变, 传统的热电设备无法贴合人体轮廓以达到最佳的体温调节效果。因此, 本文基于剪纸技术设计了一种具有出色的透气性、柔性和共形性的可穿戴式热电设备。数值分析和实验结果均表明, 本文开发的热电设备能够承受各种类型的大程度的机械变形, 且不会导致电路断裂。上述成果和所提出的简便方法不仅推动了可穿戴式热电设备的发展, 还为各种需要高度共形性的电子设备提供了创新机遇。


引用本文(点击最下方阅读原文可下载PDF)

Chow L, Zhao G, Wu P, et al., 2024. Soft, body conformable electronics for thermoregulation enabled by kirigami. Bio-des Manuf 7(4):453–462. https://doi.org/10.1007/s42242-024-00290-6

文章导读



图1 可穿戴热电设备(TED)的设计细节和制造


图2 热电设备(TED)的力学分析


图3 热电设备(TED)的性能表征


图4 热电设备(TED)的佩戴试验和演示示意图

参考文献

上下滑动以阅览

1. Li XQ, Guo WL, Hsu PC (2023) Personal thermoregulation by moisture-engineered materials. Adv Mater 2023:2209825. https://doi.org/10.1002/adma.202209825

2. Hong S, Gu Y, Seo JK (2019) Wearable thermoelectrics for personalized thermoregulation. Sci Adv 5(5):eaae0536. https://doi.org/10.1126/sciadv.aaw0536

3. Smallcombe JW, Foster J, Hodder SG (2022) Quantifying the impact of heat on human physical work capacity; part IV: interactions between work duration and heat stress severity. Int J Biometeorol 66:2463–2476. https://doi.org/10.1007/s00484-022-02370-7

4. Osilla EV, Marsidi JL, Shumway KR (2023) Physiology Temperature Regulation. StatPearls Publishing, Treasure Island, USA

5. Google Scholar Elsaid AM, Mohamed HA, Abdelaziz GB et al (2021) A critical review of heating, ventilation, and air conditioning (HVAC) systems within the context of a global SARS-CoV-2 epidemic. Process Safety Environ Protect 155:230–261. https://doi.org/10.1016/j.psep.2021.09.021

6. Shi XL, Zou J, Chen ZG (2020) Advanced thermoelectric design: from materials and structures to devices. Chem Rev 120:7399–7515. https://doi.org/10.1021/acs.chemrev.0c00026

7. Veselý M, Zeiler W (2014) Personalized conditioning and its impact on thermal comfort and energy performance—a review. Renew Sust Energy Rev 34:401–408. https://doi.org/10.1016/j.rser.2014.03.024

8. McLinden MO, Brown JS, Brignoli R et al (2017) Limited options for low-global-warming-potential refrigerants. Nat Commun 8:14476. https://doi.org/10.1038/ncomms14476

9. Heo SY, Lee GJ, Song YM (2022) Heat-shedding with photonic structures: radiative cooling and its potential. J Mater Chem C 10:9915–9937. https://doi.org/10.1039/D2TC00318J

10. Ernst TC, Garimella S (2013) Demonstration of a wearable cooling system for elevated ambient temperature duty personnel. Appl Therm Eng 60(1–2):316–324. https://doi.org/10.1016/j.applthermaleng.2013.06.019

11. Li JY, Fu Y, Zhou JK et al (2023) Ultrathin, soft, radiative cooling interfaces for advanced thermal management in skin electronics. Sci Adv 9(14):eadg1837. https://doi.org/10.1126/sciadv.adg1837

12. Wang HM, Zhang Y, Liang XP et al (2021) Smart fibers and textiles for personal health management. ACS Nano 15(8):12497–12508. https://doi.org/10.1021/acsnano.1c06230

13. Kang MH, Lee GJ, Lee JH et al (2021) Outdoor-useable, wireless/battery-free patch-type tissue oximeter with radiative cooling. Adv Sci 8(10):2004885. https://doi.org/10.1002/advs.202004885

14. Byun SH, Yun JH, Heo SY et al (2022) Self-cooling gallium-based transformative electronics with a radiative cooler for reliable stiffness tuning in outdoor use. Adv Sci 9(24):2202549. https://doi.org/10.1002/advs.202202549

15. Dou SL, Xu HB, Zhao JP et al (2021) Bioinspired microstructured materials for optical and thermal regulation. Adv Mater 33(6):2000697. https://doi.org/10.1002/adma.202000697

16. Savage N (2009) Thermoelectric coolers. Nat Photon 3:541–542. https://doi.org/10.1038/nphoton.2009.158

17. Minnich AJ, Dresselhaus MS, Ren ZF et al (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2(5):466–479. https://doi.org/10.1039/B822664B

18. Drebushchak VA (2008) The Peltier effect. J Therm Anal Calorim 91:311–315. https://doi.org/10.1007/s10973-007-8336-9

19. Zhang QH, Deng KF, Wilkens L et al (2022) Micro-thermoelectric devices. Nat Electron 5:333–347. https://doi.org/10.1038/s41928-022-00776-0

20. Cao TY, Shi XL, Chen ZG (2023) Advances in the design and assembly of flexible thermoelectric device. Prog Mater Sci 131:101003. https://doi.org/10.1016/j.pmatsci.2022.101003

21. Yang SQ, Qiu PF, Chen LD et al (2021) Recent developments in flexible thermoelectric devices. Small Sci 1(7):2100005. https://doi.org/10.1002/smsc.202100005

22. Kanahashi K, Pu J, Takenobu T (2020) 2D materials for large-area flexible thermoelectric devices. Adv Energy Mater 10(11):1902842. https://doi.org/10.1002/aenm.201902842

23. Wei HX, Zhang J, Han Y et al (2022) Soft-covered wearable thermoelectric device for body heat harvesting and on-skin cooling. Appl Energy 326:119941. https://doi.org/10.1016/j.apenergy.2022.119941

24. Liu Y, Zhuo FL, Zhou J et al (2022) Machine-learning assisted handwriting recognition using graphene oxide-based hydrogel. ACS Appl Mater Interfaces 14(18):54276–54286. https://doi.org/10.1021/acsami.2c17943

25. Yu SZ, Hou YC, Jin QJ et al (2023) Biomimetic chlorophyll derivatives-based photocatalytic fabric for highly efficient O2 production via CO2 and H2O photoreaction. Chem Eng J 472:145103. https://doi.org/10.1016/j.cej.2023.145103

26. Bang KM, Park W, Ziolkowski P et al (2021) Fabrication and cooling performance optimization of stretchable thermoelectric cooling device. ACS Appl Electron Mater 3(12):5433–5442. https://doi.org/10.1021/acsaelm.1c00886

27. Choi J, Dun CC, Forsythe C et al (2021) Lightweight wearable thermoelectric cooler with rationally designed flexible heatsink consisting of phase-change material/graphite/silicone elastomer. J Mater Chem A 9(28):15696–15703. https://doi.org/10.1039/D1TA01911B

28. Zhang Y, Gao J, Zhu SJ et al (2022) Wearable thermoelectric cooler based on a two-layer hydrogel/nickel foam heatsink with two-axis flexibility. ACS Appl Mater Interfaces 14(13):15317–15323. https://doi.org/10.1021/acsami.2c01777

29. Sugahara T, Ekubaru Y, Nong NV et al (2019) Fabrication with semiconductor packaging technologies and characterization of a large-scale flexible thermoelectric module. Adv Mater Technol 4(2):1800556. https://doi.org/10.1002/admt.201800556

30. Yang Y, Hu HJ, Chen ZY et al (2020) Stretchable nanolayered thermoelectric energy harvester on complex and dynamic surfaces. Nano Lett 20(6):4445–4453. https://doi.org/10.1021/acs.nanolett.0c01225

31. Sato Y, Terashima S, Iwase E (2023) Origami-type flexible thermoelectric generator fabricated by self-folding. Micromachines 14(1):218. https://doi.org/10.3390/mi14010218

32. Rösch AG, Gall A, Aslan S et al (2021) Fully printed origami thermoelectric generators for energy-harvesting. npj Flex Electron 5:1. https://doi.org/10.1038/s41528-020-00098-1

33. Rafsanjani A, Bertoldi K (2017) Buckling-induced kirigami. Phys Rev Lett 118:084301. https://doi.org/10.1103/PhysRevLett.118.084301

34. Blees MK, Barnard AW, Rose PA et al (2015) Graphene kirigami. Nature 524:204–207. https://doi.org/10.1038/nature14588

35. Lamoureux A, Lee K, Shlian M et al (2015) Dynamic kirigami structures for integrated solar tracking. Nat Commun 6:8092. https://doi.org/10.1038/ncomms9092

36. Wu CS, Wang X, Lin L et al (2016) Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano 10(4):4652–4659. https://doi.org/10.1021/acsnano.6b00949

37. Kim DH, Lu N, Ma R et al (2011) Epidermal electronics. Science 333(6044):838–843. https://doi.org/10.1126/science.1206157

38. Rogers JA, Someya T, Huang YG (2010) Materials and mechanics for stretchable electronics. Science 327(5973):1603–1607. https://doi.org/10.1126/science.1182383

39. Webb RC, Bonifas AP, Behnaz A et al (2013) Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater 12:938–944. https://doi.org/10.1038/nmat3755

40. Liu YH, Pharr M, Salvatore GA (2017) Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11(10):9614–9635. https://doi.org/10.1021/acsnano.7b04898

41. Brooks AK, Chakravarty S, Ali M et al (2022) Kirigami-inspired biodesign for applications in healthcare. Adv Mater 34(18):2109550. https://doi.org/10.1002/adma.202109550

42. Luo YF, Abidian MR, Ahn JH et al (2023) Technology roadmap for flexible sensors. ACS Nano 17:5211–5295. https://doi.org/10.1021/acsnano.2c12606

43. Davoodi E, Montazerian H, Khademhosseini A et al (2020) Sacrificial 3D printing of shrinkable silicone elastomers for enhanced feature resolution in flexible tissue scaffolds. Acta Biomater 117:261–272. https://doi.org/10.1016/j.actbio.2020.10.001

44. ASTMD5169-98 (2021) Standard test method for shear strength (dynamic method) of hook and loop touch fastener. ASTM International, West Conshohocken. https://doi.org/10.1520/D5169-98R21

45. Yang WZ, Gao ZZ, Yue ZF et al (2019) Hard-particle rotation enabled soft–hard integrated auxetic mechanical metamaterials. Proc Royal Soc A Math Phys Eng Sci 475(2228):20190234. https://doi.org/10.1098/rspa.2019.0234

46. Article MathSciNet Google Scholar Chow L, Yick KL, Wong KH et al (2022) 3D printing auxetic architectures for hypertrophic scar therapy. Macromol Mater Eng 307(5):2100866. https://doi.org/10.1002/mame.202100866

47. Corrigan T, Fleming P, Eldredge C et al (2023) Strong conformable structure via tension activated kirigami. Commun Mater 4:31. https://doi.org/10.1038/s43246-023-00357-4

48. Cho H, Seo D, Kim DN (2018) Mechanics of auxetic materials. In: Hsueh CH, Schmauder S, Chen CS et al (Eds.), Handbook of Mechanics of Materials. Springer, Singapore, p.733–757. https://doi.org/10.1007/978-981-10-6884-3_25

49. Chen J, Jiang JH, Weber J et al (2023) Shape morphing by topological patterns and profiles in laser-cut liquid crystal elastomer kirigami. ACS Appl Mater Interfaces 15(3):4538–4548. https://doi.org/10.1021/acsami.2c20295

50. Cheng Z, Koh YR, Mamun A et al (2020) Experimental observation of high intrinsic thermal conductivity of AlN. Phys Rev Mater 4:044602. https://doi.org/10.1103/PhysRevMaterials.4.044602

51. Kwiecien SY, McHugh MP (2021) The cold truth: the role of cryotherapy in the treatment of injury and recovery from exercise. Eur J Appl Physiol 121:2125–2142. https://doi.org/10.1007/s00421-021-04683-8

52. John SS, Mohanty S, Chaudhary Z et al (2020) Comparative evaluation of low level laser therapy and cryotherapy in pain control and wound healing following orthodontic tooth extraction: a double blind study. J Cranio-Maxillofacial Surg 48(3):251–260. https://doi.org/10.1016/j.jcms.2020.01.012

53. Yang X, He SS, Wang J et al (2023) Hyaluronic acid-based injectable nanocomposite hydrogels with photo-thermal antibacterial properties for infected chronic diabetic wound healing. Int J Biol Macromol 242:124872. https://doi.org/10.1016/j.ijbiomac.2023.124872

54. Freedman BR, Hwang C, Talbot S et al (2023) Breakthrough treatments for accelerated wound healing. Sci Adv 9:eade7007. https://doi.org/10.1126/sciadv.ade7007

55. Sawada T, Okawara H, Nakashima D et al (2022) Effects of alternating heat and cold stimulation using a wearable thermo-device on subjective and objective shoulder stiffness. J Physiol Anthropol 41:1. https://doi.org/10.1186/s40101-021-00275-9


关于本刊

Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。


初审迅速:初审快速退稿,不影响作者投其它期刊。

审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。

收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。

文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。


期刊主页:

http://www.springer.com/journal/42242

http://www.jzus.zju.edu.cn/ (国内可下载全文)

在线投稿地址:

http://www.editorialmanager.com/bdmj/default.aspx


入群交流

围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码

生物设计与制造BDM
论文导读、领域资讯
 最新文章