浙江大学邹俊团队和莫斯科国立大学Elena Y. Kramarenko团队 | 可循环的铁磁打印丝用于可持续的无约束软体机器人

文摘   2024-09-19 18:45   浙江  

内容简介


本研究论文聚焦可循环的铁磁打印丝及基于该丝一体化打印可持续的软体机器人。机器人的快速发展与大量使用给工业和日常生活带来了高效和极大的便利性,但是随之而来的电子废物和机器人废弃材料,给环境带来了威胁。磁驱动软体机器人可无线远程操控,有望在一些功能上替代刚体机器人,并且往往由单一的材料实现,这有可能可以实现机器人的可回收;同时现有的打印方法打印的磁驱动软体机器人往往只具备简单的结构。使用可回收的材料实现复杂结构的磁驱动软体机器人的一体化打印,并实现软体机器人的可持续,仍然是一个持续的挑战。在此,我们提出一种铁磁纤维,可用于打印具有复杂结构的软体机器人,而且这些铁磁纤维可回收,实现了软体机器人的可持续发展。直径为1.75毫米的铁磁纤维基于热塑性聚氨酯(TPU)/钕铁硼混合颗粒,由挤出机挤出,具有良好的可打印性、机械性能和回收性能,适用于商用桌面熔融沉积建模(FDM)三维打印机。我们使用FDM三维打印机演示了用铁磁纤维打印二维和复杂三维软体机器人的可行性。我们基于纤维打印的软体机器人在完成任务后可回收再打印成新的机器人。我们通过实验验证了新机器人的执行能力与旧机器人几乎没有差别,而且具有新的功能,可用于新的应用场景,这证明我们的机器人是可持续的、环保的。机器人升降物体、抓取和移动物体等成功应用,验证了我们的无绳软体机器人的可无线操作能力和广泛的应用前景。完全可回收的铁磁丝为打印和重打印可持续发展的软体机器人铺平了道路,有效地减少了电子废物和机器人废弃材料,这对环境保护和节约资源具有重要意义。


引用本文(点击最下方阅读原文可下载PDF)

Tang W, Gao Y, Dong Z, et al., 2024. Sustainable and untethered soft robots created using printable and recyclable ferromagnetic fibers. Bio-des Manuf (Early Access). https://doi.org/10.1007/s42242-024-00303-4

文章导读



图1 可循环的铁磁打印丝及可持续的软体机器人


图2 铁磁打印丝的表征


图3 一体化打印的软体机器人的表征


图4 二维及三维的3D打印的软体机器人的变形


图5 可持续的软体机器人的应用

参考文献

上下滑动以阅览

1. Awasthi AK, Li J, Koh L et al (2019) Circular economy and electronic waste. Nat Electron 2:86–89. https://doi.org/10.1038/s41928-019-0225-2

2. Shittu OS, Williams ID, Shaw PJ (2021) Global E-waste management: can WEEE make a difference? A review of e-waste trends, legislation, contemporary issues and future challenges. Waste Manag 120:549–563. https://doi.org/10.1016/j.wasman.2020.10.016

3. Peng P, Shehabi A (2023) Regional economic potential for recycling consumer waste electronics in the United States. Nat Sustain 6(1):93–102. https://doi.org/10.1038/s41893-022-00983-9

4. Tembhare SP, Bhanvase BA, Barai DP et al (2022) E-waste recycling practices: a review on environmental concerns, remediation and technological developments with a focus on printed circuit boards. Environ Dev Sustain 24(7):8965–9047. https://doi.org/10.1007/s10668-021-01819-w

5. Hartmann F, Baumgartner M, Kaltenbrunner M (2021) Becoming sustainable, the new frontier in soft robotics. Adv Mater 33(19):2004413. https://doi.org/10.1002/adma.202004413

6. Titirici M, Baird SG, Sparks TD et al (2022) The sustainable materials roadmap. J Phys Mater 5(3):032001. https://doi.org/10.1088/2515-7639/ac4ee5

7. Mohanty AK, Vivekanandhan S, Pin JM et al (2018) Composites from renewable and sustainable resources: challenges and innovations. Science 362(6414):536–542. https://doi.org/10.1126/science.aat9072

8. Xu ZP, Wu MR, Gao WW et al (2022) A sustainable single-component “Silk nacre.” Sci Adv 8(19):eabo0946. https://doi.org/10.1126/sciadv.abo0946

9. Bai XJ, Shang JZ, Luo ZR et al (2022) Development of amphibious biomimetic robots. J Zhejiang Univ-SCI A (Appl Phys & Eng) 23(3):157–187. https://doi.org/10.1631/jzus.A2100137

10. Wang JR, Xi YX, Ji C et al (2022) A biomimetic robot crawling bidirectionally with load inspired by rock-climbing fish. J Zhejiang Univ-SCI A (Appl Phys & Eng) 23(1):14–26. https://doi.org/10.1631/jzus.A2100280

11. Jin YB, Cheng SW, Yuan YY et al (2022) Anthropomorphic hand based on twisted-string-driven da Vinci’s mechanism for approaching human dexterity and power of grasp. J Zhejiang Univ-SCI A (Appl Phys & Eng) 23(10):771–782. https://doi.org/10.1631/jzus.A2200216

12. Tang W, Zhang C, Zhong YD et al (2021) Customizing a self-healing soft pump for robot. Nat Commun 12(1):2247. https://doi.org/10.1038/s41467-021-22391-x

13. Tang W, Lin YQ, Zhang C et al (2021) Self-contained soft electrofluidic actuators. Sci Adv 7(34):eabf8080. https://doi.org/10.1126/sciadv.abf8080

14. Zhong YD, Tang W, Zhang C et al (2022) Programmable thermochromic soft actuators with “two dimensional” bilayer architectures for soft robotics. Nano Energy 102:107741. https://doi.org/10.1016/j.nanoen.2022.107741

15. Zhong YD, Tang W, Xu HX et al (2023) Phase-transforming mechanical metamaterials with dynamically controllable shape-locking performance. Natl Sci Rev 10(9):nwad192. https://doi.org/10.1093/nsr/nwad192

16. Tang W, Zhong YD, Xu HX et al (2023) Self-protection soft fluidic robots with rapid large-area self-healing capabilities. Nat Commun 14(1):6430. https://doi.org/10.1038/s41467-023-42214-5

17. Wang D, Zhao BW, Li XL et al (2023) Dexterous electrical-driven soft robots with reconfigurable chiral-lattice foot design. Nat Commun 14(1):5067. https://doi.org/10.1038/s41467-023-40626-x

18. Zhu PA, Tang W, Jiao ZD et al (2023) Liquid manipulator with printed electrode patterns for soft robotic systems. Adv Mater Technol 8(18):2300308. https://doi.org/10.1002/admt.202300308

19. Fu L, Zhao WQ, Ma JY et al (2022) A humidity-powered soft robot with fast rolling locomotion. Research 2022:9832901. https://doi.org/10.34133/2022/9832901

20. Zhang C, Zhu PA, Lin YQ et al (2021) Fluid-driven artificial muscles: bio-design, manufacturing, sensing, control, and applications. Bio-Des Manuf 4(5):123–145. https://doi.org/10.1007/s42242-020-00099-z

21. Ma SQ, Jiang ZY, Wang M et al (2021) 4D printing of PLA/PCL shape memory composites with controllable sequential deformation. Bio-Des Manuf 4(4):867–878. https://doi.org/10.1007/s42242-021-00151-6

22. Kim Y, Zhao XH (2022) Magnetic soft materials and robots. Chem Rev 122(5):5317–5364. https://doi.org/10.1021/acs.chemrev.1c00481

23. Dong Y, Wang L, Zhang ZF et al (2022) Endoscope-assisted magnetic helical micromachine delivery for biofilm eradication in tympanostomy tube. Sci Adv 8(40):abq8573. https://doi.org/10.1126/sciadv.abq8573

24. Zhou C, Yang YZ, Wang JX et al (2021) Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nat Commun 12(1):5072. https://doi.org/10.1038/s41467-021-25386-w

25. Yi SZ, Wang L, Chen ZP et al (2022) High-throughput fabrication of soft magneto-origami machines. Nat Commun 13(1):4177. https://doi.org/10.1038/s41467-022-31900-5

26. Wang CX, Wu YD, Dong XG et al (2023) In situ sensing physiological properties of biological tissues using wireless miniature soft robots. Sci Adv 9(23):eadg3988. https://doi.org/10.1126/sciadv.adg3988

27. Jin ZBY, He CF, Fu JZ et al (2022) Balancing the customization and standardization: exploration and layout surrounding the regulation of the growing field of 3D-printed medical devices in China. Bio-Des Manuf 5(3):580–606. https://doi.org/10.1007/s42242-022-00187-2

28. Mohammadi M, Zolfagharian A, Bodaghi M et al (2022) 4D printing of soft orthoses for tremor suppression. Bio-Des Manuf 5(1):786–807. https://doi.org/10.1007/s42242-022-00199-y

29. Hou YH, Wang WG, Bartolo P (2022) Application of additively manufactured 3D scaffolds for bone cancer treatment: a review. Bio-Des Manuf 5(3):556–579. https://doi.org/10.1007/s42242-022-00182-7

30. Chung HJ, Parsons AM, Zheng LL (2020) Magnetically controlled soft robotics utilizing elastomers and gels in actuation: a review. Adv Intell Syst 3(3):2000186. https://doi.org/10.1002/aisy.202000186

31. Bira N, Dhagat P, Davidson JR (2020) A review of magnetic elastomers and their role in soft robotics. Front Robot AI 7:588391. https://doi.org/10.3389/frobt.2020.588391

32. Peng LL, Zhang YX, Wang J et al (2022) Slug-inspired magnetic soft millirobot fully integrated with triboelectric nanogenerator for on-board sensing and self-powered charging. Nano Energy 99:107367. https://doi.org/10.1016/j.nanoen.2022.107367

33. Chen GS, Ma B, Zhang J et al (2023) Reprogrammable magnetic soft robots based on low melting alloys. Adv Intell Syst 5(10):2300173. https://doi.org/10.1002/aisy.202300173

34. Zhao R, Dai HD, Yao HC (2022) Liquid-metal magnetic soft robot with reprogrammable magnetization and stiffness. IEEE Robot Autom Lett 7(2):4535–4541. https://doi.org/10.1109/LRA.2022.3151164

35. Chen Y, Zhao X, Li Y et al (2021) Light- and magneticresponsive synergy controlled reconfiguration of polymer nanocomposites with shape memory assisted self-healing performance for soft robotics. J Mater Chem C 9(16):5515–5527. https://doi.org/10.1039/D1TC00468A

36. Zhang LW, Zhao S, Zhou XZ et al (2023) A magnetic-driven multi-motion robot with position/orientation sensing capability. Research 6(33):0177. https://doi.org/10.34133/research.0177

37. Ma CP, Wu S, Ze QJ et al (2021) Magnetic multimaterial printing for multimodal shape transformation with tunable properties and shiftable mechanical behaviors. ACS Appl Mater Interfaces 13(11):12639–12648. https://doi.org/10.1021/acsami.0c13863

38. Yan CY, Zhang XQ, Ji ZY et al (2021) 3D-printed electromagnetic actuator for bionic swimming robot. J Mater Eng Perform 30(9):6579–6587. https://doi.org/10.1007/s11665-021-05918-7

39. Roh S, Okello LB, Golbasi N et al (2019) 3D-printed silicone soft architectures with programmed magneto-capillary reconfiguration. Adv Mater Technol 4(4):1800528. https://doi.org/10.1002/admt.201800528

40. Zhao DK, Xu HQ, Yin J et al (2022) Inkjet 3D bioprinting for tissue engineering and pharmaceutics. J Zhejiang Univ-SCI A (Appl Phys & Eng) 23(12):955–973. https://doi.org/10.1631/jzus.A2200569

41. Kim Y, Yuk H, Zhao RK et al (2018) Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558(7709):274–279. https://doi.org/10.1038/s41586-018-0185-0

42. Abdel-Bary EM (2003) Handbook of Plastic Films. Smithers Rapra Publishing. https://chemtec.org/products/978-1-85957-338-9

43. Shi XK, Wang Q, Wang C et al (2022) An AI-based curling game system for winter Olympics. Research 2022:9805054. https://doi.org/10.34133/2022/9805054

44. Qin KC, Tang W, Zhong YD et al (2023) An aerial–squatic robot with tunable tilting motors capable of multimode motion. Adv Intell Syst 5(11):2300193. https://doi.org/10.1002/aisy.202300193

45. Buchner TJK, Rogler S, Weirich S et al (2023) Vision-controlled jetting for composite systems and robots. Nature 623(7987):522–530. https://doi.org/10.1038/s41586-023-06684-3


关于本刊

Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区,2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。


初审迅速:初审快速退稿,不影响作者投其它期刊。

审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。

收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。

文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。


期刊主页:

http://www.springer.com/journal/42242

http://www.jzus.zju.edu.cn/ (国内可下载全文)

在线投稿地址:

http://www.editorialmanager.com/bdmj/default.aspx


入群交流

围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码

生物设计与制造BDM
论文导读、领域资讯
 最新文章