DOI Link:
https://doi.org/10.1016/j.ensm.2024.103802
Googleshcolar
https://scholar.google.com/citations?user=LsAQS_MAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=6DYvWUgAAAAJ&hl=en&oi=sra
ScienceDirect:
UniversityWeb:
https://www.inet.tsinghua.edu.cn/info/1427/2260.htm
Received: 8 July 2024
1. 科学问题
混合正极材料缓解LIB TR LIB ISC 过程中的模式切换判断的实验研究
2. 实验与模型方法
2.1 电池样品
1. 阴极:
97 wt.%阴极材料(包括NCM811与LFP以不同比例)。
0.7 wt.% Super P(SP)作为导电碳添加剂,提升电子导电性。
1.5 wt.% PVDF(聚偏二氟乙烯)作为粘合剂,确保颗粒的内聚力。
0.8 wt.%碳纳米管(CNTs),增强导电性,CNTs具有优良的电子传输特性。
NMP(N-甲基吡咯烷酮)作为溶剂,帮助PVDF溶解并促进浆料混合。
不同的NCM811与LFP的质量比用于制备多个阴极样品:
BNL电极:NCM811与LFP的比例为85/15。
NCM811+10% LFP电极:比例为90/10。
NCM811+5% LFP电极:比例为95/5。
对照NCM811电极:比例为100/0。
2. 阳极:
97 wt.%人工石墨(采购自江西郑拓新能源科技有限公司)。
1.7 wt.% CMC(羧甲基纤维素)(采购自新乡赫乐利达动力源有限公司)。
1.8 wt.%粘合剂(采购自成都印象动力源有限公司)。
0.5 wt.% SP作为导电添加剂
3. 隔膜与电解液:
选择厚度为20µm的PE-Al2O3隔膜。
在露点温度低于40°C的干燥室内组装袋式电池。
使用1 M LiPF6的电解液,溶剂为EC/EMC/DMC(体积比为1:1:1)和2 wt.%乙烯碳酸酯(VC)。
3. 研究结果
3.1 ISC 形式
Fig. 1a:机械损伤期间识别的四种典型ISC模式:
Al-Cu Ca-An(正极活性材料层与负极活性材料层接触) Al-An(铝集流体与负极活性材料层接触) Ca-Cu(正极活性材料与铜集流体接触)
Fig. 1c:触发热失控的危险等级:
Al-An ≈ Al-Cu > Ca-Cu > Ca-An
传统LIBs:Ca-An ISC模式被认为是最安全的ISC模式
3.2 钉穿测试总结
1. NCM811||Gr软包电池(Fig. 2a):
电压:钉穿瞬间电压迅速下降至接近0V。
温度:温度飙升至超过300°C。
现象:伴有烟雾和火焰喷射(Fig. 2c, Fig. 3a),燃烧结束后有少量黑灰残留,外壳脆弱并破裂,针周围变黑且与材料有明显间隙,显示发生了热失控。 2. BNL||Gr软包电池(Fig. 2b):
电压:钉穿瞬间电压从约4.2V下降至约3.8V,随后逐渐下降。
温度:最高温度上升至55°C。
现象:无烟雾和火焰,电池保持平整干净,未发生热失控。针周围电极紧密包裹,电极材料无分层,显示出较强的附着力。 3. 钉穿测试结果对比(Fig. 2d及Figs. 4、5):
NCM811||Gr电池在钉穿后出现热失控,电压和温度迅速变化,导致燃烧和外壳破裂。
BNL||Gr电池则温度上升较低,电压缓慢下降,未出现热失控。
Table S1 所有NCM811||Gr电池都经历了热失控,而BNL||Gr电池均安全通过了钉穿测试。 4. 不同LFP添加量的影响(Figs. 6a-d):
NCM811+5% LFP电池在钉穿测试中仍发生热失控,10% LFP的电池表现出不确定性,但部分通过了测试。
添加15% LFP的NCM811电池表现出最佳钉穿安全性,所有电池成功通过测试,且热失控风险显著降低,但容量有所减少。
Fig. 6. Nail penetration (NP) tests of the fully charged 4 Ah 811+5%LFP||Gr and 811+10%LFP||Gr pouch cells. (a and b) Voltage and temperature variations during NP of 811+5%LFP||Gr pouch cells, with insets showing some flakes and charred shells of the batteries during and after inserting the nail. (c and d) Voltage and temperature variations during NP of 811+10%LFP||Gr pouch cells, with insets showing photographs of batteries during and after inserting the nail. One of the cells (c) experienced thermal runaway, exhibiting some flakes and charred shells, while the other (d) remained intact. The 811+10%LFP||Gr pouch cells have a chance of passing the NP tests.
3.3 电池内部短路模式验证实验总结
1. BNL电极机械损伤状态:
Fig. 7a 钉穿测试后,BNL||Gr电池内部未发生局部热失控。电池的阴极和阳极材料仍覆盖在孔附近,未见明显的Al或Cu箔暴露。
石墨阳极颜色变化,推测与SOC(充电状态)相关。孔周围区域呈现金黄色,符合LiC6的颜色,表明未发生局部热失控。
Fig. 8a、b 孔周围局部变形增加了阴极和阳极之间的距离,阻止了化学和电化学反应。经刮除后的阴极Al箔完好无损,未受热反应影响。
Fig. S1b-d X射线光电子光谱 钉穿孔边缘和距离边缘处的Ni2p、Fe2p和F1s元素光谱无明显差异,表明局部并未发生显著的热失控。 2. 内部短路模式验证实验:
Fig. 7a 对NCM811||Gr和BNL||Gr电池进行Al-An和Ca-An ISC模式验证实验。
Fig. 9 实验中,完全充电后的电池被拆解,并在阴极中心预留未涂层区域,阴极、阳极及隔膜的中心均打孔,注入电解液后施加负载。
NCM811||Gr电池(Fig. 7b):
在阴极与阳极接触前,电压保持在4.2V,接触后温度迅速上升至36°C,电压瞬间下降至0V,表明其主要表现为Al-An短路模式。BNL||Gr电池(Fig. 7c):
温度变化较小,电压稳定在3.7V,进一步证实其表现为Ca-An短路模式。3. 验证实验结果对比:
Fig. 10a、b 结果与设计的Al-An和Ca-An ISC模式变化趋势一致。验证实验中的温度上升低于实际实验,主要由于验证电池的热导率较高,且散热面积较大。
3.4 电池阴极机械损伤行为总结
1. 机械性质与断裂行为差异:
在钉穿过程中,NCM811||Gr和BNL||Gr电池的短路模式差异主要源于阴极机械性能的不同。
Fig. 11a 使用直径为6 mm的不锈钢压头对NCM811和BNL电极进行压痕测试。
结果显示:
(1) BNL电极的失效位移比NCM811高1.6倍,所能承受的力也比NCM811高200N。LFP纳米颗粒减轻了BNL电极材料层的滑移。
(2) Fig. 11b NCM811电极在压痕测试后,靠近压头的材料层损坏,暴露出鱼鳞状的Al箔,并在孔边缘产生细小裂纹。
(3) Fig. 11c BNL电极的上层和底层裂纹明显,材料层与Al箔呈线性贯通破裂,但未见Al箔暴露。2. 剪切和拉伸测试:
Fig. 8 剪切测试结果表明,NCM811||Gr电池发生火花(Fig. 8c),而BNL||Gr电池则保持安全(Fig. 8d)。CM811电池的电极边缘暴露出Al箔(Fig. 8e),NL电极则保持完好(Fig. 8f)。
Fig. 12 BNL电极材料层的凝聚力和与Al箔的粘附力都比NCM811电极更强,归因于BNL电极中粘合剂的不同分布。
3. 有限元分析模拟: 使用有限元模型模拟两种阴极在机械损伤下的动态变形过程和失效机制。 在NCM811电极中,随着负载和位移的增加,电极材料层首先从Al箔上剥离并逐渐暴露Al箔,位移达到0.9 mm时Al箔断裂。而BNL电极则在Al箔断裂前材料层发生变形,但仍覆盖在Al箔上,避免了Al箔暴露(Fig. 11d、e)。
4. 纳米压痕测试: 为了消除Al箔的干扰,进一步对阴极材料层进行纳米压痕测试(Fig. 13)。
BNL阴极材料层的杨氏模量和硬度均是NCM811电极的两倍,这表明LFP颗粒增强了BNL电极的抗变形能力,使其不易压碎(Table S2)。
5. 循环稳定性:
NCM811阴极在充放电周期中体积变化较大,而BNL电极的机械性能表明它更能适应活性颗粒体积变化产生的应力,可能提高了BNL||Gr电池的循环稳定性(Fig. 14、15)。
3.5 划伤和剥离损伤测试
钉穿测试与拉伸测试
Fig. 15a 表征阴极的凝聚力和粘附力,进行划伤和剥离损伤测试,施加切向力。
划伤测试结果
在划伤测试中,随着施加的法向载荷线性增加,压头逐渐穿透电极至当前收集器。
NCM811电极的失效模式:
(1)在14.2 N的临界载荷下,表面出现裂纹,表现为LC1失效模式。
(2)Fig. 15b 在17.4 N时,电极材料层完全从铝箔上脱离,暴露出铝箔,表明LC3失效模式的粘附力失效。BNL电极的失效模式:
(1)裂纹在20.4 N的载荷下出现,表现为LC1失效模式,显示出较强的凝聚力。
(2)在23.3 N时,沿划痕线发生损伤和裂纹扩展(LC2失效模式),但直到达到仪器的上限载荷28.8 N,材料层才完全剥离,表明其与铝箔之间的粘附强度超过28.8 N,明显高于NCM811电极的粘附强度。
剥离测试结果
Fig. 15d 在剥离测试中,将一端的铝箔与电极材料层粘贴3M胶带(40 mm宽),两端夹持在拉伸机中。
Fig. 15e NCM811电极在测试后有部分材料表面粘附在胶带上,表明材料层与铝箔之间的粘附强度高于材料层的凝聚强度(0.75 N,Fig. 16b)。
Fig. 15f BNL电极材料层并未从铝箔上剥离,3M胶带的粘合层则脱落并粘附于电极表面,表明其凝聚力和粘附力均超过胶带的粘附强度,这些强度明显高于NCM811电极。
原因分析
NCM811和BNL阴极在相同粘合剂含量和类型下,凝聚力和粘附力的不同主要是由粘合剂分布和电极微观结构的差异造成的。
整体结果
在钉穿、划伤和剥离测试中,BNL电极显示出增强的凝聚力和粘附力,有效防止了阴极涂层的脱落和铝箔的暴露,从而形成安全的内部短路(ISC)模式,降低了锂离子电池的热失控风险。
3.6 阴极微观结构表征
粘合剂的分散和接触点
均匀的粘合剂分散和众多接触点能有效提高阴极的凝聚力和粘附力。
微观结构表征技术
使用聚焦离子束(FIB)、扫描电子显微镜(SEM)和能量色散X射线光谱(EDS)对NCM811和BNL阴极的微观形态和PVDF、LFP、NCM的空间分布进行表征。
NCM811阴极的SEM图 Fig. 17a, b, 18a–c
电极材料层由颗粒聚集形成,EDS映射表明NCM811颗粒被PVDF包围,氟的元素分布更集中、不均匀且不连续。BNL阴极的SEM图Fig. 17f, g, 18d–g
大颗粒的NCM811被小颗粒的LFP和PVDF包围),LFP和PVDF填充了NCM811的空隙,PVDF的分散更均匀。
孔隙率与粘合剂接触
NCM811和NCM811+15%LFP阴极的孔隙率分别为37.1%和40.2%。LFP纳米颗粒的添加增加了电极的孔隙率,导致更多微孔和更窄的孔径分布,这表明LFP纳米颗粒显著增加了PVDF的分布面积和接触点。
PVDF粘合剂含有许多极性基团,通过氢键或范德瓦尔斯力与活性材料和导电剂结合,从而提高了阴极的凝聚力和粘附力,进一步增强电极材料层的失效应变。
微观结构对力学性能的影响
Fig. 6c NCM811电极的SEM截面图
电极中存在不规则的孔和间隙(粉红色区域),直径约为1 μm,阻碍了载荷转移(黄色十字表示载荷转移的终止)。这与PVDF、颗粒和铝箔之间的小接触面积和较差的粘附强度有关,导致电极材料层中的应力优先释放,进而在机械损伤中活性颗粒滑移。BNL电极的孔径较小,直径为0.3 μm和30 nm(Fig. 19),载荷能够顺利从电极表面沿电极厚度方向转移到铝箔上(Fig. 17h,红色虚线表示载荷转移路径)。
电极性能与电池安全性
电极的机械性能影响断裂失效行为,进一步决定电池在机械损伤下的内部短路(ISC)模式和安全性。
NCM811电极的粘合剂浓度降低、孔隙率减小、杨氏模量和硬度显著提高。接触点的增加增强了PVDF、活性材料和铝箔之间的粘附强度,促进了载荷沿电极材料层厚度方向的优先转移,从而导致铝箔优先断裂。
热失控与内部短路模式的变化 Fig. 20
在进行针刺(NP)测试时,使用NCM811+LMFP的4 Ah包装电池的温升不超过50°C,电压稳定在3.9 V。
环境温度较低,但在60秒内仅升高20°C,表明生成的热量不足以引发热失控。
在纳米颗粒的影响下,NCM811||Gr电池的ISC模式从危险的Al-An模式转变为BNL||Gr电池中的安全Ca-Al模式,实现了镍富电池的安全性。
添加LFP和LMFP纳米材料到NCM811阴极是提升安全性并保持优良电化学性能的可行方法。
Fig. 21 通过在NCM811中添加30 nm Al2O3的不同含量(0%、2%、15%),制备了电池硬币电池并进行了划伤测试 NCM811、NCM811+2% Al2O3和NCM811+15% Al2O3的粘附强度临界失效载荷分别为3.0、5.8和8.5 N,表明Al2O3纳米颗粒显著增强了粘附强度。
安全性与失效应变的关系
阴极材料层的失效应变可作为锂离子电池机械安全性预测试的标准。随着阴极材料层失效应变的增加,LIB中的ISC模式从危险的Al-An模式转变为安全的Ca-An模式。
改善机械性能和阴极失效应变的方法包括开发替代粘合剂、调整粘合剂浓度梯度等,但在不改变生产设备、粘合剂或其他辅助材料且不增加成本的情况下,修改电极活性材料(如添加LFP和LMFP纳米材料)是一种更可行的方法。
4. 重要结论
在NCM811||Gr电池中,出现危险的Al-An ISC模式,可能导致热失控。而在含有NCM811和LFP纳米颗粒的BNL||Gr电池中,出现更安全的Ca-An ISC模式。 NCM811电极更容易暴露铝箔,而BNL电极则表现出较高的安全性。 LFP纳米颗粒增加了阴极中PVDF的空间分散性和均匀性。PVDF、阴极颗粒和铝箔之间的接触点增加,提高了电极材料层的凝聚力和电极材料层与铝箔之间的粘附力。 在BNL阴极受到机械损伤时,电极材料层首先挤压铝箔发生破裂,难以剥离,从而避免了与铝箔相关的危险ISC模式,确保电池安全。
PDF