AFM: COF@GA钠离子电容器

文摘   2024-10-13 00:00   北京  

点击蓝字 关注我们

00

Abstract

钠离子电容器(SIC)兼具电池和超级电容器的优点,在储能应用中大有可为。然而,由于迟缓的法拉第反应阳极与快速的非法拉第反应阴极之间的不匹配,它们面临着巨大的挑战。本文报道了在石墨烯气凝胶(GA)上原位生长具有多个活性位点(C = O、C = N 和 C = C)的共价有机框架(TA-DH-COF),从而合成出一种具有分层孔隙的新型 TA-DH-COF/GA 阳极,用于 SIC。得益于分子设计和分层结构工程的协同效应,所获得的 TA-DH-COF/GA 阳极具有丰富的可访问活性位点以及高效的离子和电子传输途径。结合理论计算和光谱研究发现,TA-DH-COF/GA 的储纳机理和传输动力学基于丰富的可触及活性位点通过四级过程对 Na+ 的可逆配位,具有电容储能特性。当与活性炭(AC)阴极耦合时,TA-DH-COF/GA||AC SIC 器件显示出超高的能量/功率密度(≈56 Wh kg-1 和 ≈10 000 W kg-1)和长期循环稳定性(18 000 次循环后容量保持率为 88.8%),优于现有的 SIC 器件。这项研究揭示了基于 COF 的材料在 SIC 中实现高能量/功率密度的潜力。

01

Highlights

1. 采用TA-DH-COF内部多种活性中心(C=O、C=N和C=C)与石墨烯(GA)材料的复合设计,可显著提高储钠性能和电化学动力学。

2. TA-DH-COF/GA负极通过可逆的Na+配位机制存储能量,具有优异的电容性特征。

3. 当与活性炭(AC)正极组装成SIC装置时,可实现超高的能量密度(约56 Wh kg-1)和功率密度(约10,000 W kg-1),同时具备长循环稳定性(18,000次循环后保持88.8%容量)。

4. 该研究展示了COF基材料在SIC中应用的巨大潜力,可实现高能量密度和高功率密度的储能器件。

02

results






Fig.1 a) Hierarchical pore-structure of TA-DH-COF/GA models at different scales. b,d) SEM, c) TEM images of TA-DH-COF/GA. e) Vertical view of the deformation charge density images of TA-DH-COF/GA. f) The electrostatic potential map of TA-DH-COF.






Fig.2 a) Experimental, Pawley refined, and simulated PXRD patterns for TA-DH-COF b) N2 adsorption measurements at 77 K and c) pore size distribution of TA-DH-COF, TA-DH-COF/GA, and GA. d) FT-IR spectra of TAPT, DHTP, TA-DH-COF, and TA-DH-COF/GA. e) Solid-state 13C NMR spectra of TA-DH-COF and TA-DH-COF/GA. XPS spectra of f) C 1s and g) N 1s of TA-DH-COF, TA-DH-COF/GA, and GA.


Fig.3 a) CV curves of TA-DH-COF/GA at 0.2 mV s−1. b) Cycling performance of GA, TA-DH-COF, and TA-DH-COF/GA. c) The discharge and charge curves of TA-DH-COF/GA at 100 mA g−1 for the first three cycles and the 50th and 100th cycles d) Nyquist plots of TA-DH-COF and TA-DH-COF/GA. e) The relationships between Z′ and ω−1/2 from 0.1 to 0.01 Hz corresponding linear fitting curves of TA-DH-COF and TA-DH-COF/GA. f) Rate capability of GA, TA-DH-COF, and TA-DH-COF/GA. g) Long-term cycling stability of TA-DH-COF/GA at 10 A g−1. h) Comparison of the performance to other COF anodes in SIBs.



Fig.4 CV curves at different scanning rates, determination of b-values of cathodic and anodic current peaks, and contribution ratio of capacitance control: a–c) the as-prepared TA-DH-COF/GA, d–f) the TA-DH-COF/GA after 100 cycles. g) In situ Nyquist plots, c) preselected voltage, and d) corresponding Rs, Rct, and Zw at various voltages for TA-DH-COF/GA.


Fig.5 a) The discharge and charge curves of TA-DH-COF/GA at 0.1 A g−1. Ex situ b) FT-IR spectra, c) EPR spectra, d) C 1s XPS spectra, e) O 1s XPS spectra, and f) N 1s XPS spectra of TA-DH-COF/GA at different charge-discharge states. g) The simulated sodiation route for TA-DH-COF electrode. The left and right axes represent the redox potential versus Na/Na+ and the total energy for various Na+-intercalated structures, respectively. h) Structural evolution during the sodiation procedure.


Fig.6 a) Schematic diagram of the TA-DH-COF/GA||AC SIC device. b) CV curves of TA-DH-COF/GA and AC in Na half cells (top) and TA-DH-COF/GA||AC SIC device (bottom) at 2 mV s−1. c) CV curves, d) rate performance, e) charge-discharge plots of TA-DH-COF/GA||AC SIC device. f) Ragone plots of the optimal TA-DH-COF/GA||AC SIC device compared with previously reported SICs. g) Long-term cycling performance of TA-DH-COF/GA||AC at a high current density of 2 A g−1. h) Photograph of LED arrays and thermometer powered by the SIC device.

03

Details

A Novel Hierarchical Porous Covalent Organic Framework as Multi-Active-Center Anode for High-Performance Sodium Ion Capacitors


原文链接:

https://doi.org/10.1002/adfm.202415402

T

I

P

版权声明:本公众号旨在分享学习交流COFs/MOFs等领域的资讯及最新研究进展。素材来源于网络(侵删),编辑水平有限,上述仅代表个人观点。投稿,荐稿或合作请后台联系编辑。感谢各位关注!


科研人,科研魂,科研人都是人上人




共价有机框架和过氧化氢
共价有机框架关注我就足够!
 最新文章