Chem: 2D机械互锁COFs

文摘   2024-10-13 00:00   北京  

点击蓝字 关注我们

00

Abstract

分子级结构修饰是赋予材料高级功能的一种行之有效的方法,一直是学术界和工业界实验室的研发重点。在此,报告了利用金属配位和亚胺缩合反应形成的烯酸链节,通过两种有机配体和一种金属盐的同时自组装合成有序二维(2D)聚[2]烯酸酯的过程。随后对亚胺键进行化学还原,生成了相应的脱金属聚[2]卡烯酸酯,由于机械键的内部动态增加,这种聚[2]卡烯酸酯比聚[2]卡烯酸酯具有更强的非刚性体特性,并使弹性增加了 8 倍。这种合成方法可以在二维有序结构中有效地加入机械互锁分子(MIMs),并通过获得其他方法无法实现的分子自由度,证明了它们在改善材料物理性质方面的重要性。

01

Highlights

1. 合成了一种结构独特的COF,具有机械互锁组分。这种COF赋予了其机械键联,以提高机械性能。

2. 使用金属配位和亚胺缩合反应形成有序的2D卡特连体结构。化学还原亚胺键生成纯有机互锁连接体,具有更高的非刚性特性。

3. 这种合成方法能有效地在2D有序结构中引入机械互锁分子。

4. 机械键联的重要性在于通过获得无法通过其他方式实现的分子自由度来改善材料性能。

5. 金属化互锁COF比无金属互锁连体网络硬度高8倍,两者都显示出良好的机械强度。

02

results






Scheme.1 Schematic representation of the synthesis of the cadmium [2]catenate, the organic [2]catenane, and the catenated materials. (A) Upper: chemical structure of the cadmium [2]catenate (Cd[2]C) and the demetallated organic [2]catenane ([2]C). Lower: chemical structure of the [2]catenate- and the [2]catenane-bridged COFs; carbons are color coded with pink, red, and blue, nitrogen color coded with green, cadmium(II) with yellow, and oxygen with orange. Reaction conditions: (i) (a) Cd(OAc)2, MeOH/H2O (1:1), 80°C, 1d, 92% and (b) NH4ReO4, MeOH/H2O, RT, 5 min, 95%; (ii) NaBH4, MeOH, RT, 1d, 89%; and (iii) Cd(OAc)2, NH4ReO4, DMF/EtOH (1:1), 80°C, 3d, 72%. (B) Space-filling view of the X-ray single-crystal structure of the [2]catenate Cd[2]C. The two mechanically interlocked, identical macrocycles are shown in red and blue.

(C) Space-filling structure of the [2]catenate-bridged Cdpoly[2]C COF obtained from powder X-ray diffraction-guided simulated structure. (D) Simulated structure of the [2]catenane [2]C. The two mechanically interlocked, identical macrocycles are shown in red and blue.

(E) Space-filling structure of Poly[2]C. For all structures, hydrogen atoms, acetate, and perrhenate counter anions are omitted for the sake of clarity.


Fig.1 Schematic representations of one- and two-dimensional catenated network structures

(A) 1D main-chain poly[n]catenane; (B) 2D main-chain poly[n]catenane; (C) 1D bridged poly [2]catenane; (D) 1D side-chain poly[2]catenane; (E) 1D pendant poly[2]catenane; (F) catenane-bridged two-periodic network, prepared in this study, through metal-templated self-assembly of a pair of ligands.






Fig.2 Solid-state NMR characterization of the metalated bridged [2]catenane network structure. (A) Solid-state 13C CP/MAS NMR spectrum of the activated Cdpoly[2]C; (B) Two-dimensional solid-state 1H-13C HETCOR CP/MAS NMR spectrum of Cdpoly[2]C; (C) 113Cd CP/MAS NMR spectra of Cd(OAc)2⋅2H2O, Cd[2]C, Cdpoly[2]C, and Poly[2]C; two-dimensional 1H-113Cd HETCOR solid-state NMR spectra of (D) Cd[2]C, (E) CdPoly[2]C, (F) asymmetric unit of Cd[2]C, and (G) Cdpoly[2]C, showing the coordination sphere around the cadmium ion and nearby protons within 5 Å of the cadmium ion.


Fig.3 Microscopic characterization of the metalated and demetallated catenane-bridged network structures. SEM (A and D), TEM (B and E; inset: lattice fringes), and AFM (C and F; inset: AFM height profile) images of Cdpoly[2]C (A–C) and Poly[2]C (D–F) network structures.


Fig.4 In-depth structural characterization of the 2D-catenated COF structure. (A) Comparison of the experimental PXRD pattern (blue) (measured using small-angle X-ray scattering) and the simulated PXRD pattern for the optimized Cdpoly[2]C COF structure (red) and the calculated Bragg positions (black bars). (B and C) 3D top and side views and 2 × 2 packed simulated structure of the Cdpoly[2]C COF. (D–H) Single layer of the Cdpoly[2]C COF structure, (E) zoomed single subunit of the polycatenate COF structure and their corresponding view of above (F) and below (G) planes, and (H) further zoomed view of the simulated structure.


Fig.5 Nano-indentation studies of the networks. (A) Schematic representation of a typical AFM nano-indentation experiment. (B) Loading and unloading curves collected for CdPoly[2]C, Poly[2]C, and their corresponding monomeric subunits and analogous polymeric material using AFM nano-indentation studies. (C) Loading and unloading curves of Cdpoly[2]C and Poly[2]C and their corresponding monomeric subunit analog’s polymeric material using conventional nano-indentation. (D) Young’s modulus values calculated with error bars for Cdpoly[2]C, Poly[2]C, PolyL, Cd[2]C, and [2]C using AFM nano-indentation and conventional nano-indentation studies. (E) Hardness values with error bars of Cdpoly[2]C, Poly[2]C, PolyL, Cd[2]C, and [2]C using AFM nano-indentation and conventional nano-indentation studies. (F) Plot of penetration depth versus Young’s modulus for Cdpoly[2]C, Poly[2]C using AFM nano-indentation experiment.

∗Error bars in the all above graphs correspond to the standard deviation derived from the mean value from five measurements.

03

Details

2D covalent organic framework via catenation


原文链接:

https://doi.org/10.1016/j.chempr.2024.09.006

T

I

P

版权声明:本公众号旨在分享学习交流COFs/MOFs等领域的资讯及最新研究进展。素材来源于网络(侵删),编辑水平有限,上述仅代表个人观点。投稿,荐稿或合作请后台联系编辑。感谢各位关注!


科研人,科研魂,科研人都是人上人




共价有机框架和过氧化氢
共价有机框架关注我就足够!
 最新文章