点击蓝字 关注我们
Abstract
Highlights
1. 通过配体置换策略实现了B原子的靶向掺杂.
2. 自模板碳化过程中调控B–N和吡啶氮的形成,构建了高效的FLPs活性位.
3. 吡啶氮和B–N协同作用有利于H2和C=O的有效活化,进而实现了对α,β-不饱和醛的选择性加氢.
4. 利用原位DRIFTS表征和密度泛函理论计算验证了反应机理,B–N/吡啶氮FLPs活性位是关键.
5. 该催化剂表现出优异的反应性能和稳定性,为全固态FLPs金属自由催化剂的实际应用提供了范例.
results
Scheme.1 Potential Reaction Products for α,β-Unsaturated Aldehyde Hydrogenation
Fig.1 Schematic images of concept for the design of all-solid-state FLPs metal-free catalysts in carbon material. DFT calculation structures for B/pyridinic-N (I), B–N/pyridinic-N (II), B/pyrrolic-N (III), B–N/pyrrolic-N (IV), B/graphite-N (V), and B–N/graphite-N (VI); electron-density isosurface of the I–VI structures (I*–VI*).
Fig.2 Schematic synthesis of SNW-BCN (a), cross-polarization 13C MAS natural abundance NMR spectra (b), cross-polarization 15N MAS natural abundance NMR spectra (c) and 2D 11B{17O} D-HMQC spectra (d) of SNW-B; FTIR spectra of TA, MA, SNW-1, and SNW-B (e); TGA spectra of SNW-1, SNW-B, and TA-MA-B (f); TEM images of SNW-B (g1) and SNW-BCN (g2); and EDS elemental mappings (h1) and EDS line scan images (h2) of SNW-BCN.
Fig.3 C K-edge (a), N K-edge (b), and B K-edge (c) XANES spectra of SNW-BCN and BCN. XPS-C 1s (d), XPS-N 1s (e), XPS-B 1s (f), FTIR (g), Py-FTIR (h), NH3-TPD (i), CO2-TPD (j), and EPR signal (k) and catalytic performance (l) of SNW-CN, SNW-BCN, and BCN. Reaction conditions: cinnamaldehyde (CAL), 9 mmol; isopropanol, 10 g; catalyst, 50 mg; temperature, 150 °C; time, 5.5 h; and pressure, 1 MPa H2.
Fig.4 Influences of pyridine, pyrrole, or ethyl acetate on the catalytic activity of the SNW-BCN (a); catalytic stability of the SNW-BCN (b); Py-FTIR (c), NH3-TPD (d), CO2-TPD (e), and EPR (f) of SNW-BCN and tenth SNW-BCN. Reaction conditions: CAL, 9 mmol; isopropanol, 10 g; catalyst, 50 mg; temperature, 150 °C; time, 5.5 h; and pressure, 1 MPa H2.
Fig.5 Catalytic performance of the SNW-BCN for substrate expansion (yield). Reaction conditions: substrate, 9 mmol; isopropanol, 10 g; catalyst, 50 mg; temperature, 150 °C; and pressure, 1 MPa H2.
Fig.6 In situ DRIFTS spectra of absorbed CAL on the SNW-BCN and BCN (a); in situ DRIFTS spectra of the CAL hydrogenation over SNW-BCN (b,c) and BCN (d,e).
Fig.7 Optimized structures with bond distance (Å) for CAL to COL on the model (II) surface (a); calculated energy profiles for the potential comparative free energy of CAL to COL on the model-(II) (b) and model-(I) (c).
Details
Covalent Organic Framework-Derived B/N Co-Doped Carbon FLPs Metal-Free Catalysts for the Selective Hydrogenation of α,β-Unsaturated Aldehydes to Unsaturated Alcohols
原文链接:
https://doi.org/10.1021/acscatal.4c04537
T
I
P
版权声明:本公众号旨在分享学习交流COFs/MOFs等领域的资讯及最新研究进展。素材来源于网络(侵删),编辑水平有限,上述仅代表个人观点。投稿,荐稿或合作请后台联系编辑。感谢各位关注!