ACS Catalysis: COFs配体交换定制FLPs位点催化不饱和醛选择性加氢

文摘   2024-10-13 00:00   北京  

点击蓝字 关注我们

00

Abstract


目前的一项挑战是如何精确定制受挫路易斯对(FLPs)位点,以构建全固态 FLPs 无金属催化剂,使其在活化 H2 方面与同质/金属催化剂一样有效,甚至更有效。本研究采用配体交换策略和自模板碳化法,在富氮共价有机框架(SNW-1)中有针对性地掺入 B 原子,从而精确地定制出 FLPs 位点,制备出 B/N 共掺碳(SNW-BCN)催化剂。催化剂随后被用于将 α、β-不饱和醛选择性氢化为不饱和醇。研究发现,从富氮的 SNW-1 中可以获得大量的吡啶-N 位点。此外,还可以通过引入带有路易斯酸杂原子的有机配体(4-甲酰基苯硼酸)来实现 B 原子的定向掺杂,从而抢占 SNW-1 的配体位点。此外,B 原子与邻近 N 原子在高温下优先形成的 B-N 共价键也可以作为路易斯酸位点。DFT 计算和原位表征表明,邻近富电子的吡啶-N 和缺电子的 B-N 位点可形成 B-N/pyridinic-N 路易斯酸位点,能有效激活 H2 和 α、β-不饱和醛的 C═O,H-H 键的解离能仅为 0.36 eV。这项工作促进了不饱和醇的环保型合成,并为开发和合成全固态 FLPs 无金属催化剂提供了新的概念。此外,还对催化剂放大实验进行了研究,因为这些实验可能会为催化剂的大规模生产提供启示。

01

Highlights

1. 通过配体置换策略实现了B原子的靶向掺杂. 

2. 自模板碳化过程中调控B–N和吡啶氮的形成,构建了高效的FLPs活性位. 

3. 吡啶氮和B–N协同作用有利于H2和C=O的有效活化,进而实现了对α,β-不饱和醛的选择性加氢. 

4. 利用原位DRIFTS表征和密度泛函理论计算验证了反应机理,B–N/吡啶氮FLPs活性位是关键. 

5. 该催化剂表现出优异的反应性能和稳定性,为全固态FLPs金属自由催化剂的实际应用提供了范例.

02

results






Scheme.1  Potential Reaction Products for α,β-Unsaturated Aldehyde Hydrogenation


Fig.1 Schematic images of concept for the design of all-solid-state FLPs metal-free catalysts in carbon material. DFT calculation structures for B/pyridinic-N (I), B–N/pyridinic-N (II), B/pyrrolic-N (III), B–N/pyrrolic-N (IV), B/graphite-N (V), and B–N/graphite-N (VI); electron-density isosurface of the I–VI structures (I*–VI*).





Fig.2  Schematic synthesis of SNW-BCN (a), cross-polarization 13C MAS natural abundance NMR spectra (b), cross-polarization 15N MAS natural abundance NMR spectra (c) and 2D 11B{17O} D-HMQC spectra (d) of SNW-B; FTIR spectra of TA, MA, SNW-1, and SNW-B (e); TGA spectra of SNW-1, SNW-B, and TA-MA-B (f); TEM images of SNW-B (g1) and SNW-BCN (g2); and EDS elemental mappings (h1) and EDS line scan images (h2) of SNW-BCN.


Fig.3  C K-edge (a), N K-edge (b), and B K-edge (c) XANES spectra of SNW-BCN and BCN. XPS-C 1s (d), XPS-N 1s (e), XPS-B 1s (f), FTIR (g), Py-FTIR (h), NH3-TPD (i), CO2-TPD (j), and EPR signal (k) and catalytic performance (l) of SNW-CN, SNW-BCN, and BCN. Reaction conditions: cinnamaldehyde (CAL), 9 mmol; isopropanol, 10 g; catalyst, 50 mg; temperature, 150 °C; time, 5.5 h; and pressure, 1 MPa H2.



Fig.4 Influences of pyridine, pyrrole, or ethyl acetate on the catalytic activity of the SNW-BCN (a); catalytic stability of the SNW-BCN (b); Py-FTIR (c), NH3-TPD (d), CO2-TPD (e), and EPR (f) of SNW-BCN and tenth SNW-BCN. Reaction conditions: CAL, 9 mmol; isopropanol, 10 g; catalyst, 50 mg; temperature, 150 °C; time, 5.5 h; and pressure, 1 MPa H2.


Fig.5 Catalytic performance of the SNW-BCN for substrate expansion (yield). Reaction conditions: substrate, 9 mmol; isopropanol, 10 g; catalyst, 50 mg; temperature, 150 °C; and pressure, 1 MPa H2.


Fig.6 In situ DRIFTS spectra of absorbed CAL on the SNW-BCN and BCN (a); in situ DRIFTS spectra of the CAL hydrogenation over SNW-BCN (b,c) and BCN (d,e).


Fig.7 Optimized structures with bond distance (Å) for CAL to COL on the model (II) surface (a); calculated energy profiles for the potential comparative free energy of CAL to COL on the model-(II) (b) and model-(I) (c).

03

Details

Covalent Organic Framework-Derived B/N Co-Doped Carbon FLPs Metal-Free Catalysts for the Selective Hydrogenation of α,β-Unsaturated Aldehydes to Unsaturated Alcohols


原文链接:

https://doi.org/10.1021/acscatal.4c04537

T

I

P

版权声明:本公众号旨在分享学习交流COFs/MOFs等领域的资讯及最新研究进展。素材来源于网络(侵删),编辑水平有限,上述仅代表个人观点。投稿,荐稿或合作请后台联系编辑。感谢各位关注!


科研人,科研魂,科研人都是人上人




共价有机框架和过氧化氢
共价有机框架关注我就足够!
 最新文章