点击上方“蓝字”,关注更多精彩
题目译名:“组合”多靶点药物治疗和新制剂可减少炎症并改善创伤性脊髓损伤的内源性髓鞘再生
发表期刊:Cells
发表时间:2023 年 5月
观点提炼:
1.脊髓损伤是难治性疾病
2.NGF已经证实具备神经修复和炎症抑制的作用
3.在本文中,NGF或通过促进M1型小胶质细胞的减少而发挥减轻炎症,促进髓鞘再生的作用
4.脊髓神经损伤是复杂的情况,需要多药物联合治疗,而非单个特效药可以应对
文献精读
脊髓损伤(SCI)的特征是导致感觉和运动障碍的一系列事件。迄今为止,这种情况是不可逆转的,并且无法治愈。为了改善髓磷脂修复(myelin repair)并限制继发性损伤,我们开发了一种基于纳米药物(nanomedicines)(NMeds)的多种疗法,该药物装载了促髓鞘剂三碘甲状腺原氨酸(the promyelinating agent triiodothyronine)(T3),与全身性布洛芬和小鼠神经生长因子(mNGF)结合使用。对聚-L-乳酸-共乙醇酸(PLGA)NMed进行优化并装载T3以促进缓释。体外实验证实了T3-NMeds不同于少突胶质细胞前体细胞的有效性。在大鼠体内进行SCI挫伤实验,探讨NMed的生物分布以及组合药物在短期和长期病变后的疗效。在短期内观察到显著的抗炎作用,M1型小胶质细胞和谷氨酸水平降低,但随后TREM2增加。从长远来看,观察到NG2-IR髓鞘形成的改善,MBP含量的增加和脱髓鞘面积的减少。这些数据表明,NMeds可以成功地用于获得更可控的局部药物递送,并且这种多重治疗可以有效改善SCI的结局。
简介
材料和方法
结果
3.1. T3-NMed 表征
3.2. 体外 T3 释放和细胞摄取(Cell Uptake)
3ד组合”(T3负载NMeds-mNGF-Ibu)对炎症标志物的短期和长期影响。
M1型小胶质细胞通过“组合”治疗显著减少,尽管没有抑制。治疗大鼠病变后8天时脑脊液中小胶质细胞相关标志物TREM2的水平也显著增加。然后,我们使用OX42-IR作为小胶质细胞标记物,使用GFAP-IR作为星形胶质细胞形成的标记物,病变56天后探索脊髓组织中病灶正中侧和尾侧的残余神经炎症。在载体和3ד组合”治疗的动物中,我们观察到相比于非损伤大鼠,病变大鼠免疫染色增加,并且小胶质细胞形态表型在载体和3ד组合”处理的大鼠之间没有显著差异。
3ד组合”疗法对长期髓鞘再生标志物的影响
我们观察到,与载体处理的大鼠相比,3ד组合”组的脱髓鞘区域逐渐减少,总体价值显著降低。
3ד组合”疗法对神经变性标志物的短期和长期影响。
病变56天后通过脊髓取样后的肉眼分析,评估载体组与治疗组大鼠的瘢痕延伸来分析病变稳定程度(图6D,E),分析显示,与载体注射组相比,治疗大鼠的瘢痕面积显著减少。
讨论
在这项研究中,我们测试了一种多靶点方法来限制实验SCI的继发性损伤发作和进展。我们使用了市售药物和新型给药溶液的组合,在实验性损伤后立即给药。在病灶部位局部注射装载T3的NMeds,目的是有利于少突胶质前体细胞(OPCs)的分化和髓鞘修复(myelin repair);布洛芬的全身给药旨在减少炎症的有害影响;局部和全身性NGF用于促进神经保护和调节炎症。这种 3× “组合”疗法被证明可以减少病变诱导的小胶质细胞 1 型活化,同时在短期(病变后8天)增加脑脊液中的 TREM2浓度,有利于髓磷脂保护/修复,并在长期(病变后56 天)恢复运动功能。
结论
向上滑动阅览
1. Merritt C.H., Taylor M., Yelton C.J., Ray S.K. Economic impact of traumatic spinal cord injuries in the United States. Neuroimmunol. Neuroinflamm. 2019;6:9. doi: 10.20517/2347-8659.2019.15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
2. Alizadeh A., Dyck S.M., Karimi-Abdolrezaee S. Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms. Front. Neurol. 2019;10:282. doi: 10.3389/fneur.2019.00282. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
3. David G., Mohammadi S., Martin A.R., Cohen-Adad J., Weiskopf N., Thompson A., Freund P. Traumatic and nontraumatic spinal cord injury: Pathological insights from neuroimaging. Nat. Rev. Neurol. 2019;15:718–731. doi: 10.1038/s41582-019-0270-5. [PubMed] [CrossRef] [Google Scholar]
4. Ng S.Y., Lee A.Y.W. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Cell. Neurosci. 2019;13:528. doi: 10.3389/fncel.2019.00528. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
5. Asgardoon M.H., Jazayeri S.B., Behkar A., Ohadi M.A.D., Yarmohammadi H., Ghodsi Z., Pomerani T.I., Mojtahedzadeh M., Rahimi-Movaghar V. Pharmacologic therapies of pain in patients with spinal cord injury: A systematic review. Spinal Cord Ser. Cases. 2022;8:65. doi: 10.1038/s41394-022-00529-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
6. Stahel P.F., Vanderheiden T., Finn M.A. Management strategies for acute spinal cord injury. Curr. Opin. Crit. Care. 2012;18:651–660. doi: 10.1097/MCC.0b013e32835a0e54. [PubMed] [CrossRef] [Google Scholar]
7. Evaniew N., Belley-Côté E.P., Fallah N., Noonan V.K., Rivers C.S., Dvorak M.F. Methylprednisolone for the Treatment of Patients with Acute Spinal Cord Injuries: A Systematic Review and Meta-Analysis. J. Neurotrauma. 2016;33:468–481. doi: 10.1089/neu.2015.4192. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
8. Chew L.-J., DeBoy C.A. Pharmacological approaches to intervention in hypomyelinating and demyelinating white matter pathology. Neuropharmacology. 2015;110:605–625. doi: 10.1016/j.neuropharm.2015.06.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
9. Cree B.A., Hartung H.-P., Barnett M. New drugs for multiple sclerosis: New treatment algorithms. Curr. Opin. Neurol. 2022;35:262–270. doi: 10.1097/WCO.0000000000001063. [PubMed] [CrossRef] [Google Scholar]
10. Chen Q., Zheng W., Chen X., Wan L., Qin W., Qi Z., Chen N., Li K. Brain Gray Matter Atrophy after Spinal Cord Injury: A Voxel-Based Morphometry Study. Front. Hum. Neurosci. 2017;11:211. doi: 10.3389/fnhum.2017.00211. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
11. Baldassarro V.A., Sanna M., Bighinati A., Sannia M., Gusciglio M., Giardino L., Lorenzini L., Calzà L. A Time-Course Study of the Expression Level of Synaptic Plasticity-Associated Genes in Un-Lesioned Spinal Cord and Brain Areas in a Rat Model of Spinal Cord Injury: A Bioinformatic Approach. Int. J. Mol. Sci. 2021;22:8606. doi: 10.3390/ijms22168606. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
12. Oh J., Bar-Or A. Emerging therapies to target CNS pathophysiology in multiple sclerosis. Nat. Rev. Neurol. 2022;18:466–475. doi: 10.1038/s41582-022-00675-0. [PubMed] [CrossRef] [Google Scholar]
13. Calza L., Fernandez M., Giuliani A., Aloe L., Giardino L. Thyroid hormone activates oligodendrocyte precursors and increases a myelin-forming protein and NGF content in the spinal cord during experimental allergic encephalomyelitis. Proc. Natl. Acad. Sci. USA. 2002;99:3258–3263. doi: 10.1073/pnas.052704499. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
14. Calzà L., Fernandez M., Giardino L. Cellular approaches to central nervous system remyelination stimulation: Thyroid hormone to promote myelin repair via endogenous stem and precursor cells. J. Mol. Endocrinol. 2009;44:13–23. doi: 10.1677/JME-09-0067. [PubMed] [CrossRef] [Google Scholar]
15. Calzà L., Baldassarro V.A., Fernandez M., Giuliani A., Lorenzini L., Giardino L. Thyroid Hormone and the White Matter of the Central Nervous System: From Development to Repair. Vitamins Hormones. 2018;106:253–281. doi: 10.1016/bs.vh.2017.04.003. [PubMed] [CrossRef] [Google Scholar]
16. Wooliscroft L., Altowaijri G., Hildebrand A., Samuels M., Oken B., Bourdette D., Cameron M. Phase I randomized trial of liothyronine for remyelination in multiple sclerosis: A dose-ranging study with assessment of reliability of visual outcomes. Mult. Scler. Relat. Disord. 2020;41:102015. doi: 10.1016/j.msard.2020.102015. [PubMed] [CrossRef] [Google Scholar]
17. Ottonelli I., Duskey J.T., Rinaldi A., Grazioli M.V., Parmeggiani I., Vandelli M.A., Wang L.Z., Prud’homme R.K., Tosi G., Ruozi B. Microfluidic Technology for the Production of Hybrid Nanomedicines. Pharmaceutics. 2021;13:1495. doi: 10.3390/pharmaceutics13091495. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
18. Rinaldi A., Caraffi R., Grazioli M.V., Oddone N., Giardino L., Tosi G., Vandelli M.A., Calzà L., Ruozi B., Duskey J.T. Applications of the ROS-Responsive Thioketal Linker for the Production of Smart Nanomedicines. Polymers. 2022;14:687. doi: 10.3390/polym14040687. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
19. Birolini G., Valenza M., Ottonelli I., Passoni A., Favagrossa M., Duskey J.T., Bombaci M., Vandelli M.A., Colombo L., Bagnati R., et al. Insights into kinetics, release, and behavioral effects of brain-targeted hybrid nanoparticles for cholesterol delivery in Huntington’s disease. J. Control. Release. 2021;330:587–598. doi: 10.1016/j.jconrel.2020.12.051. [PubMed] [CrossRef] [Google Scholar]
20. Rigon L., Salvalaio M., Pederzoli F., Legnini E., Duskey J.T., D’avanzo F., De Filippis C., Ruozi B., Marin O., Vandelli M.A., et al. Targeting Brain Disease in MPSII: Preclinical Evaluation of IDS-Loaded PLGA Nanoparticles. Int. J. Mol. Sci. 2019;20:2014. doi: 10.3390/ijms20082014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
21. Duskey J.T., Ottonelli I., Rinaldi A., Parmeggiani I., Zambelli B., Wang L.Z., Prud’homme R.K., Vandelli M.A., Tosi G., Ruozi B. Tween® preserves enzyme activity and stability in PLGA nanoparticles. Nanomaterials. 2021;11:2946. doi: 10.3390/nano11112946. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
22. Khan M.M., Madni A., Torchilin V., Filipczak N., Pan J., Tahir N., Shah H. Lipid-chitosan hybrid nanoparticles for controlled delivery of cisplatin. Drug Deliv. 2019;26:765–772. doi: 10.1080/10717544.2019.1642420. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
23. Ottonelli I., Caraffi R., Tosi G., Vandelli M.A., Duskey J.T., Ruozi B. Tunneling Nanotubes: A New Target for Nanomedicine? Int. J. Mol. Sci. 2022;23:2237. doi: 10.3390/ijms23042237. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
24. Watzlawick R., Sena E.S., Dirnagl U., Brommer B., Kopp M., Macleod M.R., Howells D., Schwab J. Effect and Reporting Bias of RhoA/ROCK-Blockade Intervention on Locomotor Recovery After Spinal Cord Injury. JAMA Neurol. 2014;71:91–99. doi: 10.1001/jamaneurol.2013.4684. [PubMed] [CrossRef] [Google Scholar]
25. A Kopp M., Liebscher T., Watzlawick R., Martus P., Laufer S., Blex C., Schindler R., Jungehulsing G.J., Knüppel S., Kreutzträger M., et al. SCISSOR—Spinal Cord Injury Study on Small molecule-derived Rho inhibition: A clinical study protocol. BMJ Open. 2016;6:e010651. doi: 10.1136/bmjopen-2015-010651. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
26. Duskey J.T., Rinaldi A., Ottonelli I., Caraffi R., De Benedictis C.A., Sauer A.K., Tosi G., Vandelli M.A., Ruozi B., Grabrucker A.M. Glioblastoma Multiforme Selective Nanomedicines for Improved Anti-Cancer Treatments. Pharmaceutics. 2022;14:1450. doi: 10.3390/pharmaceutics14071450. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
27. Baldassarro V.A., Krezel W., Fernández M., Schuhbaur B., Giardino L., Calza L. The role of nuclear receptors in the differentiation of oligodendrocyte precursor cells derived from fetal and adult neural stem cells. Stem Cell Res. 2019;37:101443. doi: 10.1016/j.scr.2019.101443. [PubMed] [CrossRef] [Google Scholar]
28. Baldassarro V.A. High-Content Screening Differentiation and Maturation Analysis of Fetal and Adult Neural Stem Cell-Derived Oligodendrocyte Precursor Cell Cultures. J. Vis. Exp. 2021;169:e61988. doi: 10.3791/61988. [PubMed] [CrossRef] [Google Scholar]
29. Baldassarro V.A., Marchesini A., Giardino L., Calzà L. Differential effects of glucose deprivation on the survival of fetal versus adult neural stem cells-derived oligodendrocyte precursor cells. Glia. 2019;68:898–917. doi: 10.1002/glia.23750. [PubMed] [CrossRef] [Google Scholar]
30. Bighinati A., Focarete M.L., Gualandi C., Pannella M., Giuliani A., Beggiato S., Ferraro L., Lorenzini L., Giardino L., Calzà L. Improved Functional Recovery in Rat Spinal Cord Injury Induced by a Drug Combination Administered with an Implantable Polymeric Delivery System. J. Neurotrauma. 2020;37:1708–1719. doi: 10.1089/neu.2019.6949. [PubMed] [CrossRef] [Google Scholar]
31. Ramsey J.B., Ramer L.M., Inskip J.A., Alan N., Ramer M.S., Krassioukov A.V. Care of Rats with Complete High-Thoracic Spinal Cord Injury. J. Neurotrauma. 2010;27:1709–1722. doi: 10.1089/neu.2010.1382. [PubMed] [CrossRef] [Google Scholar]
32. Bocchini V., Angeletti P.U. The Nerve Growth Factor: Purification as a 30,000-Molecular-Weight Protein. Proc. Natl. Acad. Sci. USA. 1969;64:787–794. doi: 10.1073/pnas.64.2.787. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
33. Basso D.M., Beattie M.S., Bresnahan J.C. A Sensitive and Reliable Locomotor Rating Scale for Open Field Testing in Rats. J. Neurotrauma. 1995;12:1–21. doi: 10.1089/neu.1995.12.1. [PubMed] [CrossRef] [Google Scholar]
34. Mishra P., Pandey C.M., Singh U., Gupta A., Sahu C., Keshri A. Descriptive statistics and normality tests for statistical data. Ann. Card. Anaesth. 2019;22:67–72. doi: 10.4103/aca.ACA_157_18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
35. Harauz G., Ladizhansky V., Boggs J.M. Structural Polymorphism and Multifunctionality of Myelin Basic Protein. Biochemistry. 2009;48:8094–8104. doi: 10.1021/bi901005f. [PubMed] [CrossRef] [Google Scholar]
36. Hoch-Kraft P., White R., Tenzer S., Krämer-Albers E.-M., Trotter J., Gonsior C. Dual role of the RNA helicase DDX5 in post-transcriptional regulation of Myelin Basic Protein in oligodendrocytes. J. Cell Sci. 2018;131:jcs204750. doi: 10.1242/jcs.204750. [PubMed] [CrossRef] [Google Scholar]
37. Kruger G.M., Diemel L.T., Copelman C.A., Cuzner M.L. Myelin basic protein isoforms in myelinating and remyelinating rat brain aggregate cultures. [(accessed on 1 March 2023)];J. Neuro. Res. 1999 56:241–247. doi: 10.1002/(SICI)1097-4547(19990501)56:3<241::AID-JNR3>3.0.CO;2-H. Available online: https://pubmed.ncbi.nlm.nih.gov/10336253/ [PubMed] [CrossRef] [Google Scholar]
38. Shahsavani N., Kataria H., Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2021;1867:166117. doi: 10.1016/j.bbadis.2021.166117. [PubMed] [CrossRef] [Google Scholar]
39. Lubetzki C., Zalc B., Williams A., Stadelmann C., Stankoff B. Remyelination in multiple sclerosis: From basic science to clinical translation. Lancet Neurol. 2020;19:678–688. doi: 10.1016/S1474-4422(20)30140-X. [PubMed] [CrossRef] [Google Scholar]
40. Kremer D., Göttle P., Hartung H.-P., Küry P. Pushing Forward: Remyelination as the New Frontier in CNS Diseases. Trends Neurosci. 2016;39:246–263. doi: 10.1016/j.tins.2016.02.004. [PubMed] [CrossRef] [Google Scholar]
41. Baydyuk M., Morrison V.E., Gross P.S., Huang J.K. Extrinsic Factors Driving Oligodendrocyte Lineage Cell Progression in CNS Development and Injury. Neurochem. Res. 2020;45:630–642. doi: 10.1007/s11064-020-02967-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
42. Duncan G.J., Manesh S.B., Hilton B.J., Assinck P., Plemel J.R., Tetzlaff W. The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury. Glia. 2019;68:227–245. doi: 10.1002/glia.23706. [PubMed] [CrossRef] [Google Scholar]
43. Barres B., Lazar M., Raff M.C. A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development. 1994;120:1097–1108. doi: 10.1242/dev.120.5.1097. [PubMed] [CrossRef] [Google Scholar]
44. Breton J.M., Long K.L.P., Barraza M.K., Perloff O.S., Kaufer D. Hormonal Regulation of Oligodendrogenesis II: Implications for Myelin Repair. Biomolecules. 2021;11:290. doi: 10.3390/biom11020290. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
45. Vancamp P., Butruille L., Demeneix B.A., Remaud S. Thyroid Hormone and Neural Stem Cells: Repair Potential Following Brain and Spinal Cord Injury. Front. Neurosci. 2020;14:875. doi: 10.3389/fnins.2020.00875. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
46. Chaudhary P., Marracci G., Calkins E., Pocius E., Bensen A., Scanlan T., Emery B., Bourdette D. Thyroid hormone and thyromimetics inhibit myelin and axonal degeneration and oligodendrocyte loss in EAE. J. Neuroimmunol. 2020;352:577468. doi: 10.1016/j.jneuroim.2020.577468. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
47. Calzà L., Baldassarro V., Stanzani A., Giardino L., Lorenzini L. Neuroprotection and neuroregeneration: Roles for the white matter. Neural Regen. Res. 2022;17:2376. doi: 10.4103/1673-5374.335834. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
48. Lorenzini L., Fernandez M., Baldassarro V.A., Bighinati A., Giuliani A., Calzà L., Giardino L. White Matter and Neuroprotection in Alzheimer’s Dementia. Molecules. 2020;25:503. doi: 10.3390/molecules25030503. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
49. Shao X.-R., Wei X.-Q., Song X., Hao L.-Y., Cai X.-X., Zhang Z.-R., Peng Q., Lin Y.-F. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif. 2015;48:465–474. doi: 10.1111/cpr.12192. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
50. Ottonelli I., Duskey J.T., Genovese F., Pederzoli F., Caraffi R., Valenza M., Tosi G., Vandelli M.A., Ruozi B. Quantitative comparison of the protein corona of nanoparticles with different matrices. Int. J. Pharm. X. 2022;4:100136. doi: 10.1016/j.ijpx.2022.100136. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
51. Santonocito C., Rizza R., Paris I., De Marchis L., Paolillo C., Tiberi G., Scambia G., Capoluongo E. Spectrum of Germline BRCA1 and BRCA2 Variants Identified in 2351 Ovarian and Breast Cancer Patients Referring to a Reference Cancer Hospital of Rome. Cancers. 2020;12:1286. doi: 10.3390/cancers12051286. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
52. Kamaly N., Yameen B., Wu J., Farokhzad O.C. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 2016;116:2602–2663. doi: 10.1021/acs.chemrev.5b00346. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
53. Shultz R.B., Wang Z., Nong J., Zhang Z., Zhong Y. Local delivery of thyroid hormone enhances oligodendrogenesis and myelination after spinal cord injury. J. Neural Eng. 2017;14:036014. doi: 10.1088/1741-2552/aa6450. [PubMed] [CrossRef] [Google Scholar]
54. Salas-Lucia F., Bianco A.C. T3 levels and thyroid hormone signaling. Front. Endocrinol. 2022;13:1044691. doi: 10.3389/fendo.2022.1044691. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
55. Fernández M., Baldassarro V.A., Sivilia S., Giardino L., Calzà L. Inflammation severely alters thyroid hormone signaling in the central nervous system during experimental allergic encephalomyelitis in rat: Direct impact on OPCs differentiation failure. Glia. 2016;64:1573–1589. doi: 10.1002/glia.23025. [PubMed] [CrossRef] [Google Scholar]
56. Chew L.-J., King W.C., Kennedy A., Gallo V. Interferon-γ inhibits cell cycle exit in differentiating oligodendrocyte progenitor cells. Glia. 2005;52:127–143. doi: 10.1002/glia.20232. [PubMed] [CrossRef] [Google Scholar]
57. Tanner D.C., Cherry J.D., Mayer-Pröschel M. Oligodendrocyte Progenitors Reversibly Exit the Cell Cycle and Give Rise to Astrocytes in Response to Interferon-γ J. Neurosci. 2011;31:6235–6246. doi: 10.1523/JNEUROSCI.5905-10.2011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
58. Su Z., Yuan Y., Chen J., Zhu Y., Qiu Y., Zhu F., Huang A., He C. Reactive Astrocytes Inhibit the Survival and Differentiation of Oligodendrocyte Precursor Cells by Secreted TNF-α J. Neurotrauma. 2011;28:1089–1100. doi: 10.1089/neu.2010.1597. [PubMed] [CrossRef] [Google Scholar]
59. Macrez R., Stys P.K., Vivien D., A Lipton S., Docagne F. Mechanisms of glutamate toxicity in multiple sclerosis: Biomarker and therapeutic opportunities. Lancet Neurol. 2016;15:1089–1102. doi: 10.1016/S1474-4422(16)30165-X. [PubMed] [CrossRef] [Google Scholar]
60. van der Meulen M., Amaya J.M., Dekkers O.M., Meijer O.C. Association between use of systemic and inhaled glucocorticoids and changes in brain volume and white matter microstructure: A cross-sectional study using data from the UK Biobank. BMJ Open. 2022;12:e062446. doi: 10.1136/bmjopen-2022-062446. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
61. Mukhara D., Oh U., Neigh G.N. Neuroinflammation. Handb. Clin. Neurol. 2020;175:235–259. doi: 10.1016/b978-0-444-64123-6.00017-5. [PubMed] [CrossRef] [Google Scholar]
62. Luo M., Li Y.Q., Lu Y.F., Wu Y., Liu R., Zheng Y.R., Yin M. Exploring the potential of RhoA inhibitors to improve exercise-recoverable spinal cord injury: A systematic review and meta-analysis. J. Chem. Neuroanat. 2020;111:101879. doi: 10.1016/j.jchemneu.2020.101879. [PubMed] [CrossRef] [Google Scholar]
63. Lambrechts M.J., Cook J.L. Nonsteroidal Anti-Inflammatory Drugs and Their Neuroprotective Role After an Acute Spinal Cord Injury: A Systematic Review of Animal Models. Glob. Spine J. 2020;11:365–377. doi: 10.1177/2192568220901689. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
64. Minnone G., De Benedetti F., Bracci-Laudiero L. NGF and Its Receptors in the Regulation of Inflammatory Response. Int. J. Mol. Sci. 2017;18:1028. doi: 10.3390/ijms18051028. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
65. Xia N., Gao Z., Hu H., Li D., Zhang C., Mei X., Wu C. Nerve growth factor loaded macrophage-derived nanovesicles for inhibiting neuronal apoptosis after spinal cord injury. J. Biomater. Appl. 2021;36:276–288. doi: 10.1177/08853282211025912. [PubMed] [CrossRef] [Google Scholar]
66. Keefe K.M., Sheikh I.S., Smith G.M. Targeting Neurotrophins to Specific Populations of Neurons: NGF, BDNF, and NT-3 and Their Relevance for Treatment of Spinal Cord Injury. Int. J. Mol. Sci. 2017;18:548. doi: 10.3390/ijms18030548. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
67. Wang L., Gu S., Gan J., Tian Y., Zhang F., Zhao H., Lei D. Neural Stem Cells Overexpressing Nerve Growth Factor Improve Functional Recovery in Rats Following Spinal Cord Injury via Modulating Microenvironment and Enhancing Endogenous Neurogenesis. Front. Cell. Neurosci. 2021;15:773375. doi: 10.3389/fncel.2021.773375. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
68. Ji H., Gu J., Song X., Bao J., Peng X., Xie L., Wu X. A nerve growth factor persistent delivery scaffold seeded with neurally differentiated bone marrow mesenchymal stem cells promoted the functional recovery of spinal cord injury in rats. Am. J. Transl. Res. 2021;13:2127–2142. [PMC free article] [PubMed] [Google Scholar]
69. Yang S., Zhang N., Dong Y., Zhang X. Research on Polycaprolactone-Gelatin Composite Scaffolds Carrying Nerve Growth Factor for the Repair of Spinal Cord Injury. Dis. Mrk. 2022;2022:3880687. doi: 10.1155/2022/3880687. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
70. Gao X., Cheng W., Zhang X., Zhou Z., Ding Z., Zhou X., Lu Q., Kaplan D.L. Nerve Growth Factor-Laden Anisotropic Silk Nanofiber Hydrogels to Regulate Neuronal/Astroglial Differentiation for Scarless Spinal Cord Repair. ACS Appl. Mater. Interfaces. 2022;14:3701–3715. doi: 10.1021/acsami.1c19229. [PubMed] [CrossRef] [Google Scholar]
71. Hardingham G.E. Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem. Soc. Trans. 2009;37:1147–1160. doi: 10.1042/BST0371147. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
72. Warnock A., Toomey M.L., Wright A.J., Fisher M.K., Won M.Y., Anyaegbu C., Fitzgerald M. Damage Mechanisms to Oligodendrocytes and White Matter in Central Nervous System Injury: The Australian Context. J. Neurotrauma. 2020;37:739–769. doi: 10.1089/neu.2019.6890. [PubMed] [CrossRef] [Google Scholar]
73. Devanney N.A., Stewart A.N., Gensel J.C. Microglia and macrophage metabolism in CNS injury and disease: The role of immunometabolism in neurodegeneration and neurotrauma. Exp. Neurol. 2020;329:113310. doi: 10.1016/j.expneurol.2020.113310. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
74. Fu S.-P., Chen S.-Y., Pang Q.-M., Zhang M., Wu X.-C., Wan X., Wan W.-H., Ao J., Zhang T. Advances in the research of the role of macrophage/microglia polarization-mediated inflammatory response in spinal cord injury. Front. Immunol. 2022;13:1014013. doi: 10.3389/fimmu.2022.1014013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
75. Mazaheri F., Snaidero N., Kleinberger G., Madore C., Daria A., Werner G., Krasemann S., Capell A., Trümbach D., Wurst W., et al. TREM 2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO Rep. 2017;18:1186–1198. doi: 10.15252/embr.201743922. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
76. Liu S., Li X.-M., Yuan J.-B., Li L.-L., Wang C., Lin X.-M., Miao X., Shi Z.-C. MiR-665 inhibits inflammatory response in microglia following spinal cord injury by targeting TREM2. Eur. Rev. Med. Pharmacol. Sci. 2021;25:65–70. [PubMed] [Google Scholar]
77. Wang Y., Kyauk R.V., Shen Y.A., Xie L., Reichelt M., Lin H., Jiang Z., Ngu H., Shen K., Greene J.J., et al. TREM2-dependent microglial function is essential for remyelination and subsequent neuroprotection. Glia. 2023;71:1247–1258. doi: 10.1002/glia.24335. [PubMed] [CrossRef] [Google Scholar]
78. Cignarella F., Filipello F., Bollman B., Cantoni C., Locca A., Mikesell R., Manis M., Ibrahim A., Deng L., Benitez B.A., et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol. 2020;140:513–534. doi: 10.1007/s00401-020-02193-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
79. Dingman A.L., Rodgers K.M., Dietz R.M., Hickey S.P., Frazier A.P., Clevenger A.C., Yonchek J.C., Traystman R.J., Macklin W.B., Herson P.S. Oligodendrocyte Progenitor Cell Proliferation and Fate after White Matter Stroke in Juvenile and Adult Mice. Dev. Neurosci. 2018;40:601–616. doi: 10.1159/000496200. [PubMed] [CrossRef] [Google Scholar]
点击“阅读原文”获取原文链接