文献精读|慢性酒精相关性脑损害的中国诊疗指南(2024)

文摘   健康   2024-05-22 17:00   湖北  

点击上方“蓝字”,关注更多精彩

引用本文:国家重点研发计划《酒精、吗啡依赖关键诊疗技术的推广应用研究》项目专家组, 中国医师协会神经内科分会. 慢性酒精相关性脑损害的中国诊疗指南(2024 [J] . 中华医学杂志, 2024, 104(19) : 1663-1679. DOI: 10.3760/cma.j.cn112137-20230923-00534.
通信作者:彭英,中山大学孙逸仙纪念医院神经科
观点提炼:

1.慢性酒精相关性脑损害(ARBD)患者几乎都存在慢性酒精依赖综合征发病机制。

2. 适当而有效的神经保护治疗有助于改善慢性ARBD的各种症状。

3. 鼠神经生长因子的神经营养治疗可减少慢性ARBD患者的酒精渴求、抑郁情绪和睡眠障碍。

4. 旨在帮助医师选择合适的诊疗方法提高ARBD患者临床预后。

慢性ARBD概述

慢性酒精相关性脑损害(alcohol‑related brain damage, ARBD),是一组由长期酒精摄入导致人大脑慢性损害的重要疾病谱。由于长期饮酒造成酒精作用于脑组织产生的慢性、容易复发的脑部疾病,是长期过量饮酒导致的中枢神经系统中毒,而且几乎所有患者都存在慢性酒精依赖综合征发病机制。《慢性酒精相关性脑损害的中国诊疗指南(2024)》共形成了28条推荐意见,为提高慢性ARBD的临床疗效提供参考和指导。

结合病理表现与临床表现,慢性ARBD的临床分类主要分为以下10种综合征[1‑3,18‑19]:酒精相关性认知障碍(alcohol-related cognitive impairment,ARCI)、酒精相关性痴呆(alcohol-related dementia,ARD)、韦尼克脑病(Wernicke′s encephalopathy,WE)、柯萨可夫综合征(Korsakoff syndrome,KS)、酒精性小脑变性(alcoholic cerebellar degeneration,ACD)、Marchiafava-Bignami病(MBD)、脑桥中央髓鞘溶解(central pontine myelinolysis,CPM)、酒精性癫痫、酒精性震颤-谵妄(delirium tremens,DT)和酒精性精神行为障碍等。

慢性ARBD的病理和影像学表现


各型综合征可能存在不同程度的病理表现。最常见出现的病理改变为白质脱髓鞘和灰质萎缩。白质脱髓鞘的易感部位包括前额叶皮质下、胼胝体、脑桥等,严重的脱髓鞘病变后可继发轴索损伤;而灰质萎缩主要由于神经元丢失所致,最常发生于额叶上部皮质、小脑和下丘脑,颞叶海马也可受累,引起皮质、小脑萎缩[45‑47]


推荐意见1:MRI可检测到慢性ARBD特定临床综合征的特征性影像学改变,并一定程度反映了的病理变化特征和严重程度,可辅助诊断慢性ARBD和鉴别其他脑疾病。(1B)


推荐意见 2:fMRI或 PET‑CT 检查可一定程度反映慢性ARBD的病理生理变化特征,可辅助分析慢性ARBD的功能改变和严重程度。(1C)

慢性ARBD的筛查、评估和临床诊断


推荐意见 3AUDIT量表用于评估慢性 ARBD患者的酒精使用障碍及其严重程度具有良好的信度和效度。(1B


推荐意见4OCDS用于评估慢性ARBD患者酒精渴求的程度,可用于临床评估和临床研究的随访,具有良好的信度和效度。(1B


推荐意见 5MoCA 用于评估慢性 ARBD 患者的认知功能和不同认知域的改变,并可较好地检测视空间和执行能力水平,未矫正的MoCA<26分作为酒精使用障碍合并认知障碍的分界值,具有良好的信度和效度。(1B) 

慢性ARBD的治疗


(一)戒酒

慢性ARBD的首要治疗方法就是戒酒。治疗一般分为2个阶段:一是戒酒阶段,也称作解毒阶段;另一阶段是康复治疗阶段。戒酒阶段可使用的方法包括:药物治疗和非药物治疗。

1.药物治疗:积极的药物治疗能够帮助患者戒断对酒精的依赖,防止疾病复发。

推荐意见6:可选择纳曲酮作为戒酒治疗的一线治疗药物,但纳曲酮在我国病例人群中的有效性和安全性仍需进一步明确。(2A)


推荐意见7:可选择纳美芬作为戒酒治疗的一线治疗药物,但纳美芬在我国病例人群中的有效性和安全性仍需进一步明确。(1B)


推荐意见 8:戒酒治疗药物双硫仑、阿坎酸虽然有戒酒疗效,但由于药物的可及性、安全性问题,我国病例人群临床应用少。(2A)


推荐意见9:可选择苯二氮䓬类药物作为戒酒治疗的二线治疗药物,尽可能短期使用以减少出现药物成瘾和依赖。(2A)


推荐意见10:巴氯芬、托吡酯和三环类抗抑郁药作为戒酒治疗的二线治疗药物,需充分评估患者获益‑风险比并严密随访用药安全性的情况下慎重选择使用。(2B)

2. 非药物治疗:


推荐意见 11:对左侧 DLPFC的高频重复经颅磁刺激治疗可有效改善临床预后,减少酒精渴求和复饮,以下参数具有良好的有效性和安全性[刺激部位:左侧 DLPFC 区;刺激强度:110% 运动阈值(MT);刺激频率10 Hz;刺激时间:5 s/次(循环);间歇时间:间隔20 s/次(循环);每疗程刺激次数:每天30次(循环),共10 d]。(1A)


推荐意见 12:其他脑区的重复经颅磁刺激治疗也能减少酒精渴求和复饮,但其疗效是否优于对左侧DLPFC 的高频重复经颅磁刺激治疗仍不明确。(2B)


推荐意见 13:经颅直流电刺激治疗的疗效和安全性仍需要进一步明确。(2B)


推荐意见 14:根据患者病情采取个体化的行为、心理治疗和康复治疗可提高患者临床预后,减少酒精依赖的严重程度和复饮。(2B)

(二)病因治疗


推荐意见15:纠正硫胺素(维生素B1)缺乏可改善慢性ARBD的临床预后,防止ARBD进展和加重,优先选择非肠道补充高剂量维生素B1。(1A)


推荐意见16:维生素C、维生素E对ARBD有一定的保护作用。(1C)


推荐意见 17:其他抗氧化剂的有效性和安全性仍需要进一步验证。(2D)

(三)纠正营养失调


推荐意见 18:纠正ARBD的营养失调是缓解病情、早日恢复的基础,包括给予多种维生素、必要脂肪酸、植物蛋白和植物多糖等。(1D

(四)脑保护治疗


长期酗酒的患者脑内存在过氧化物和自由基损伤及明显的神经营养因子水平低下[109‑110, 112] ,因此,适当而有效的神经保护治疗有助于改善慢性ARBD的各种症状。除使用维生素C和补充B族维生素如甲钴胺外,还可给予自由基清除剂如依达拉奉,线粒体保护剂如艾地苯醌、辅酶Q10等,以神经营养药物如鼠神经生长因子、奥拉西坦等。
本指南团队组织国内多中心临床研究的结果发现,使用依达拉奉抗氧化治疗、鼠神经生长因子的营养神经治疗可以减少慢性ARBD患者对酒精的渴求,改善抑郁情绪和睡眠障碍;

推荐意见 19:依达拉奉的抗氧化治疗可减少慢性 ARBD 患者的酒精渴求,并改善认知执行功能、抑郁情绪和睡眠障碍;鼠神经生长因子的神经营养治疗可减少慢性ARBD患者的酒精渴求、抑郁情绪和睡眠障碍。(1A)


推荐意见20:其他抗氧化、神经营养治疗慢性ARBD 的 有 效 性 和 安 全 性 仍 需 要 进 一 步 验证。(2D)

(五)各型综合征的治疗

他汀类降脂药物阿托伐他汀或瑞舒伐他汀,对酒精性脑白质脱髓鞘和酒精性认知功能障碍也可能具有一定的治疗作用[124] ,但在用药过程中应更加注意监测肝功能和肌酶。同时,可给予神经营养保护药物如鼠神经生长因子及艾地苯醌、甲钴胺等 B 族维生素以及依达拉奉等治疗。

推荐意见 21:积极非肠道补充高剂量维生素B1是KS、WE的关键病因治疗(1B)。注射甲钴胺治疗有助于提高临床预后(1D)。


推荐意见 22:胆碱酯酶抑制剂多奈哌齐可用于临床治疗 ARD的认知功能下降(1C);NMDA受体非竞争性拮抗剂美金刚可用于临床治疗ARD的认知功能下降(1D)。


推荐意见 23:短期使用苯二氮䓬类药物可稳定DT的症状(2A)。


推荐意见 24:首选苯二氮䓬类药物治疗戒断期或恢复期出现的酒精性癫痫(1C)。必要时联合丙戊酸或左乙拉西坦控制酒精性癫痫发作(2C)。


推荐意见25:可使用SSRI、SNRI或米氮平等药物减少酒精性精神和行为障碍(1B)。对于轻度焦虑、抑郁障碍,也可以联合使用中成药如舒肝解郁胶囊、乌灵胶囊等(2D)。

(六)康复治疗及其他治疗


推荐意见 26:积极的康复治疗可改善小脑性共济失调的临床症状,减少继发性运动障碍的发生和进展(1C)。


推荐意见27:针灸治疗能减轻戒断症状,有助于癫痫发作和复饮的预防(2C)。


推荐意见28:高压氧治疗能增加慢性ARBD患者脑组织的有氧代谢(2D)。

目前可证实鼠神经生长因子的营养神经治疗可以减少慢性ARBD患者对酒精的渴求,改善抑郁情绪和睡眠障碍,适当而有效的神经保护治疗有助于改善慢性ARBD的各种症状。慢性ARBD作为一组由长期酒精摄入导致人大脑慢性损害的重要疾病谱,不仅影响患者的认知、精神和行为,也对社会产生严重的疾病负担。本指南对有较多循证证据的诊断、治疗方法给予分级推荐,希望帮助广大临床医师选择合适的诊疗方法提高ARBD患者临床预后。




引用




向上滑动阅览


参 考 文 献

[1] Zahr NM, Kaufman KL, Harper CG. Clinical and pathological features of alcohol‑related brain damage[J].Nat Rev Neurol, 2011, 7(5): 284‑294. DOI: 10.1038/nrneurol.2011.42.


[2] Rao R, Draper B. Alcohol‑related brain damage in olderpeople[J]. Lancet Psychiatry, 2015, 2(8):674‑675. DOI: 10.1016/S2215‑0366(15)00215‑1.


[3] Rao R, Topiwala A. Alcohol use disorders and the brain[J] Addiction, 2020, 115(8): 1580‑1589. DOI: 10.1111/add.15023.


[4]中国医师协会神经内科分会脑与脊髓损害专业委员会. 慢性酒精中毒性脑病诊治中国专家共识[J]. 中华神经医学杂志, 2018, 17(1):2‑9. DOI: 10.3760/cma.j.issn.1671‑8925.2018.01.001.


[5] Xiang YT, Ma X, Lu JY, et al. Alcohol‑related disders inBeijing, China: prevalence, socio‑demographic correlat and unmet need for treatment[J]. Alcohol Clin Exp Res,2009, 33(6):1111‑1118. DOI: 10.1111/j.1530‑0277.2009.00933.x.


[6] Zhou L, Conner KR, Phillips MR, et al. Epidemiology ofalcohol abuse and dependence in rural chinese men[J].Alcohol Clin Exp Res, 2009, 33(10): 1770‑1776. DOI:10.1111/j.1530‑0277.2009.01014.x.


[7] Zhou L, Conner KR, Caine ED, et al. Epidemiology ofalcohol use in rural men in two provinces of China[J]. JStud Alcohol Drugs, 2011, 72(2):333‑340.DOI:10.15288/jsad.2011.72.333.


[8] Phillips MR, Zhang J, Shi Q, et al. Prevalence, treatment,and associated disability of mental disorders in fourprovinces in China during 2001‑05: an epidemiologicalsurvey[J]. Lancet, 2009, 373(9680): 2041‑2053. DOI:10.1016/S0140‑6736(09)60660‑7.


[9] Huang Y, Wang Y, Wang H, et al. Prevalence of mentldisorders in China: a cross‑sectional epidemiologicalstudy[J]. Lancet Psychiatry, 2019, 6(3): 211‑224. DOI:10.1016/S2215‑0366(18)30511‑X.


[10]许晓丽, 赵丽云, 房红芸, 等. 2010—2012年中国15岁及以上居民饮酒状况[J]. 卫生研究, 2016, 45(4):534‑537,567.DOI: 10.19813/j.cnki.weishengyanjiu.2016.04.005.


[11] Shield K, Manthey J, Rylett M, et al. National, regional, andglobal burdens of disease from 2000 to 2016 attributableto alcohol use: a comparative risk assessment study[J].Lancet Public Health, 2020, 5(1):e51‑e61. DOI: 10.1016/S2468‑2667(19)30231‑2.


[12] GBD 2016 Disease and Injury Incidence and PrevalenceCollaborators. Global, regional, and national incidence,prevalence, and years lived with disability for 328diseases and injuries for 195 countries, 1990‑2016: asystematic analysis for the Global Burden of DiseaseStudy 2016[J]. Lancet, 2017, 390(10100): 1211‑1259.DOI: 10.1016/S0140‑6736(17)32154‑2.


[13]陈耀龙, 杨克虎, 王小钦, 等. 中国制订/修订临床诊疗指南的指导原则(2022版)[J]. 中华医学杂志, 2022, 102(10):697‑703. DOI: 10.3760/cma. j. cn112137‑20211228‑02911.


[14]兰平, 何晓生. 临床实践指南的制定流程与规范[J]. 中华胃肠 外 科 杂 志 , 2022, 25(01):10‑14. DOI: 10.3760/cma.j.cn441530‑20211216‑00504.


[15] Atkins D, Best D, Briss PA, et al. Grading quality ofevidence and strength of recommendations[J]. BMJ, 2004,328(7454):1490. DOI: 10.1136/bmj.328.7454.1490.


[16] Brozek JL, Akl EA, Alonso‑Coello P, et al. Grading qualityof evidence and strength of recommendations in clinicalpractice guidelines. Part 1 of 3. An overview of the GRADE approach and grading quality of evidence aboutinterventions[J]. Allergy, 2009, 64(5): 669‑677. DOI:10.1111/j.1398‑9995.2009.01973.x.


[17] Fairbairn CE, Kang D, Federmeier KD. Alcohol and neural dynamics: a meta‑analysis of acute alcohol effects onevent‑related brain potentials[J]. Biol Psychiatry, 2021,89(10):990‑1000. DOI: 10.1016/j.biopsych.2020.11.024.


[18] Hayes V, Demirkol A, Ridley N, et al. Alcohol‑related cognitive  impairment:  current  trends  and  futureperspectives[J]. Neurodegener Dis Manag, 2016, 6(6):509‑523. DOI: 10.2217/nmt‑2016‑0030.


[19] Ridley NJ, Draper B, Withall A. Alcohol‑related dementia:an update of the evidence[J]. Alzheimers Res Ther, 2013,5(1):3. DOI: 10.1186/alzrt157.


[20] Yokota O, Tsuchiya K, Terada S, et al. Frequency and clinicopathological characteristics of alcoholic cerebellardegeneration in Japan: a cross‑sectional study of 1, 509postmortems[J]. Acta Neuropathol, 2006, 112(1): 43‑51.DOI: 10.1007/s00401‑006‑0059‑7.


[21] Del Brutto  OH,  Mera  RM,  Sullivan  LJ,  et al. Population‑based  study  of  alcoholic  cerebellardegeneration: the Atahualpa Project[J]. J Neurol Sci, 2016,367:356‑360. DOI: 10.1016/j.jns.2016.06.051.


[22] Ritchie K, Villebrun D. Epidemiology of alcohol‑related dementia[J]. Handb Clin Neurol, 2008, 89:845‑850. DOI:10.1016/S0072‑9752(07)01273‑0.


[23] Cheng C, Huang CL, Tsai CJ, et al. Alcohol‑relateddementia: a systemic review of epidemiological studies[J]. Psychosomatics, 2017, 58(4):331‑342. DOI: 10.1016/j.psym.2017.02.012.


[24] Sechi G, Serra A. Wernicke′s encephalopathy: new clinical settings and  recent  advances  in  diagnosis  andmanagement[J]. Lancet Neurol, 2007, 6(5):442‑455. DOI:10.1016/S1474‑4422(07)70104‑7.


[25] Palm A, Vataja R, Talaslahti T, et al. Incidence mortality of  alcohol‑related  dementia  andWernicke‑Korsakoff syndrome: a nationwide registerstudy[J]. Int J Geriatr Psychiatry, 2022, 37(8). DOI:10.1002/gps.5775.


[26] Visontay R, Rao RT, Mewton L. Alcohol use and dementia: new research directions[J]. Curr Opin Psychiatry, 2021,34(2):165‑170. DOI: 10.1097/YCO.0000000000000679.


[27] Sachdeva A,  Chandra  M,  Choudhary  M,  et al.Alcohol‑related  dementia  and  neurocognitiveimpairment: a review study[J]. Int J High Risk BehavAddict, 2016, 5(3):e27976. DOI: 10.5812/ijhrba.27976.


[28] Sinha S,  Kataria  A,  Kolla  BP,  et al.  Wernicke encephalopathy‑clinical pearls[J]. Mayo Clin Proc, 2019,94(6):1065‑1072. DOI: 10.1016/j.mayocp.2019.02.018.


[29] Thomson AD, Guerrini I, Marshall EJ. The evolution andtreatment of Korsakoff′s syndrome: out of sight, out ofmind? [J]. Neuropsychol Rev, 2012, 22(2): 81‑92. DOI:10.1007/s11065‑012‑9196‑z.


[30] Arts NJ, Walvoort SJ, Kessels RP. Korsakoff′s syndrome: acritical review[J]. Neuropsychiatr Dis Treat, 2017, 13: 2875‑2890. DOI: 10.2147/NDT.S130078.


[31] Fitzpatrick LE, Jackson M, Crowe SF. The relationship between alcoholic cerebellar degeneration and cognitiveand emotional functioning[J]. Neurosci Biobehav Rev,2008, 32(3): 466‑485. DOI: 10.1016/j. neubiorev. 2007.08.004.


[32] Shanmugarajah PD,  Hoggard  N,  Currie  S,  et al.Alcohol‑related cerebellar degeneration: not all down totoxicity? [J]. Cerebellum Ataxias, 2016, 3: 17. DOI:10.1186/s40673‑016‑0055‑1.


[33] Heinrich A, Runge U, Khaw AV. Clinicoradiologic subtypes of Marchiafava‑Bignami disease[J]. J Neurol, 2004, 251(9):1050‑1059. DOI: 10.1007/s00415‑004‑0566‑1.


[34] Hillbom M, Saloheimo P, Fujioka S, et al. Diagnosis and management of Marchiafava‑Bignami disease: a review ofCT/MRI  confirmed  cases[J].  J  Neurol  NeurosurgPsychiatry, 2014, 85(2): 168‑173. DOI: 10.1136/jnnp‑2013‑305979.


[35] Brown WD. Osmotic demyelination disorders: centralpontine and extrapontine myelinolysis[J]. Curr OpinNeurol, 2000, 13(6): 691‑697. DOI: 10.1097/00019052‑200012000‑00014.


[36] Martin RJ. Central pontine and extrapontine myelinolysis: the osmotic demyelination syndromes[J]. J NeurolNeurosurg Psychiatry,  2004,  75Suppl  3(Suppl  3):iii22‑iii28. DOI: 10.1136/jnnp.2004.045906.


[37] Lambeck J, Hieber M, Dreßing A, et al. Central pontine myelinosis and osmotic demyelination syndrome[J].Dtsch Arztebl Int, 2019, 116(35‑36): 600‑606. DOI:10.3238/arztebl.2019.0600.


[38] Carlson RW, Kumar NN, Wong‑Mckinstry E, et al. Alcohol withdrawal syndrome[J]. Crit Care Clin, 2012, 28(4):549‑585. DOI: 10.1016/j.ccc.2012.07.004.


[39] Schuckit MA. Recognition and management of withdrawal delirium (delirium tremens) [J]. N Engl J Med, 2014,371(22):2109‑2113. DOI: 10.1056/NEJMra1407298.


[40] Day E, Daly C. Clinical management of the alcohol withdrawal syndrome[J].  Addiction,  2022,  117(3):804‑814. DOI: 10.1111/add.15647.


[41] Hillbom M, Pieninkeroinen I, Leone M. Seizures in

alcohol‑dependent  patients:  epidemiology pathophysiology and management[J]. CNSDrugs, 2003,17(14):1013‑1030. DOI: 10.2165/00023210‑200317140‑00002.


[42] Bråthen G, Ben‑Menachem E, Brodtkorb E, et al. EFNSguideline  on  the  diagnosis  and  management  ofalcohol‑related seizures: report of an EFNS task force[J].Eur J Neurol, 2005, 12(8): 575‑581.DOI: 10.1111/j.1468‑1331.2005.01247.x.


[43] McMicken D, Liss JL. Alcohol‑related seizures[J]. EmergMed Clin North Am, 2011, 29(1):117‑124. DOI: 10.1016/j.emc.2010.08.010.


[44] Li J, Wang H, Li M, et al. Effect of alcohol use disorders and alcohol intake on the risk of subsequent depressivsymptoms: a systematic review and meta‑analysis ofcohort studies[J]. Addiction, 2020, 115(7): 1224‑1243.DOI: 10.1111/add.14935.


[45] Harper C. The neuropathology of alcohol‑related brain damage[J]. Alcohol Alcohol, 2009, 44(2): 136‑140. DOI:10.1093/alcalc/agn102.


[46] de la Monte SM, Kril JJ. Human alcohol‑related neuropathology[J]. Acta Neuropathol, 2014, 127(1):71‑90. DOI: 10.1007/s00401‑013‑1233‑3.


[47] Zahr NM, Pfefferbaum A. Alcohol′s effects on the brain: neuroimaging results in humans and animal mode


[48] Cerase A, Rubenni E, Rufa A, et al. CT and MRI of Wernicke′s encephalopathy[J]. Radiol Med, 2011, 116(2):319‑333. DOI: 10.1007/s11547‑011‑0618‑x.


[49] Manzo G, De Gennaro A, Cozzolino A, et al. MR imaging findings in alcoholic and nonalcoholic acute Wernicke′sencephalopathy: a review[J]. Biomed Res Int, 2014, 2014:503596. DOI: 10.1155/2014/503596.


[50]刘 静 , 高 博 , 余 永 程 , 等 . 不 同 临 床 类 型Marchiafava‑Bignami病的 MRI 表现分析[J]. 临床放射学杂志, 2017, 36(1):19‑23. DOI: 10.13437/j.cnki.jcr.2017.01.006.


[51] Lees B, Mewton L, Stapinski LA, et al. Neurobiological andcognitive profile of young binge drinkers: a systematicreview and meta‑analysis[J]. Neuropsychol Rev, 2019,29(3):357‑385. DOI: 10.1007/s11065‑019‑09411‑w.


[52] Klugah‑Brown B, Di X, Zweerings J, et al. Common and separable neural alterations in substance use disorders: acoordinate‑based  meta‑analyses  of  functionalneuroimaging studies in humans[J]. Hum Brain Mapp,2020, 41(16):4459‑4477. DOI: 10.1002/hbm.25085.


[53] Tervo‑Clemmens  B,  Quach  A,  Calabro  FJ,  et al. Meta‑analysis and review of functional neuroimagingdifferes  underlying  adolescent  vulnerability  tosubstance use[J]. Neuroimage, 2020, 209: 116476. DOI:10.1016/j.neuroimage.2019.116476.


[54] Crespi C, Galandra C, Canessa N, et al. Microstructural damage of white‑matter tracts connecting large‑scalenetworks is related to impaired executive profile inalcohol use disorder[J]. Neuroimage Clin, 2020, 25:102141. DOI: 10.1016/j.nicl.2019.102141.


[55] Daviet R, Aydogan G, Jagannathan K, et al. Associations between alcohol consumption and gray and white mattervolumes in the UK Biobank[J]. Nat Commun, 2022, 13(1):1175. DOI: 10.1038/s41467‑022‑28735‑5.


[56] Topiwala A, Ebmeier KP, Maullin‑Sapey T, et al. Alcohol consumption and MRI markers of brain structure andfunction: cohort study of 2578 UK Biobank participants[J]. Neuroimage Clin, 2022, 35: 103066. DOI: 10.1016/j.nicl.2022.103066.


[57] Duan R, Jing L, Li Y, et al. Altered global signal topography in alcohol use disorders[J]. Front Aging Neurosci, 2022,14:803780. DOI: 10.3389/fnagi.2022.803780.


[58] Duan R, Li Y, Jing L, et al. The altered functional

connectivity density related to cognitive impairment inalcoholics[J]. Front Psychol, 2022, 13: 973654. DOI:10.3389/fpsyg.2022.973654.


[59]温璐璐, 谢新立, 何谦益, 等 . 慢性酒精相关性脑损害的18F‑FDG PET‑CT影像学表现分析[J]. 中华神经医学杂志,, 18(1):66‑70.DOI: 10.3760/cma.j.issn.1671‑8925.2019.01.012.


[60] NIAAA) NIoAAaA. What′s a"standard drink"? [DB/OL].[2023‑09‑23]. https://www.rethinkingdrinking.niaaa.nih.gov/.


[61] Fairbanks J, Umbreit A, Kolla BP, et al. Evidence‑based pharmacotherapies for alcohol use disorder: clinicalpearls[J]. Mayo Clin Proc, 2020, 95(9): 1964‑1977. DOI:10.1016/j.mayocp.2020.01.030.


[62] Sabia S,  Fayosse  A,  Dumurgier  J,  et al.  Alcohol consumption and risk of dementia: 23 year follow‑up ofWhitehall Ⅱ cohort study[J]. BMJ, 2018, 362:k2927. DOI:10.1136/bmj.k2927.


[63] Matano RA, Koopman C, Wanat SF, et al. Assessment of binge drinking of alcohol in highly educated employees[J].Addict Behav, 2003, 28(7): 1299‑1310. DOI: 10.1016/s0306‑4603(02)00248‑4.


[64] Li Q, Babor TF, Hao W, et al. The Chinese translations of Alcohol Use Disorders Identification Test (AUDIT) inChina: a systematic review[J]. Alcohol Alcohol, 2011,46(4):416‑423. DOI: 10.1093/alcalc/agr012.


[65] Bush K, Kivlahan DR, McDell MB, et al. The AUDIT alcohol consumption questions (AUDIT‑C): an effectivebrief screening test for problem drinkingmbulatoryCare Quality Improvement Project (ACQUIP). Alcohol UseDisorders Identification Test[J]. Arch Intern Med, 1998,158(16):1789‑1795. DOI: 10.1001/archinte.158.16.1789.


[66] Lian J, Cai Y, Tu D, et al. Developing and validating an itembank for alcohol use disorder screening in the Chinesepopulation by using the computerized adaptive testing[J] Front Psychol, 2020, 11: 1652. DOI:10.3389/fpsyg.2020.01652.


[67] Tao R, Jiang F, Min K, et al. Alcohol use among mentalhealth professionals  in  China:  a  nationwidecross‑sectional survey[J]. Alcohol Alcohol, 2021, 56(3):351‑359. DOI: 10.1093/alcalc/agaa065.


[68] Hodgson RJ, John B, Abbasi T, et al. Fast screening foralcohol misuse[J]. Addict Behav, 2003, 28(8):1453‑1463.DOI: 10.1016/s0306‑4603(02)00246‑0.


[69] Meneses‑Gaya C, Zuardi AW, Loureiro SR, et al. Is the fullversion of the AUDIT really necessary? Study of thevalidity and internal construct of its abbreviated versions[J]. AlcoholClin Exp Res, 2010, 34(8): 1417‑1424. DOI:10.1111/j.1530‑0277.2010.01225.x.


[70] Seppä K, Lepistö J, Sillanaukee P. Five‑shot questionnaireon heavy drinking[J]. Alcohol Clin Exp Res, 1998, 22(8):1788‑1791.


[71] Wang H, Lan L, Lan X, et al. Validation and Factor Analysisof the Obsessive Compulsive Drinking Scale (OCDS) in theChinese population[J]. Front Psychiatry, 2021, 12:770860.DOI: 10.3389/fpsyt.2021.770860.


[72] Ridley N, Batchelor J, Draper B, et al. Cognitive screeningin substance  users:  diagnostic  accuracies  of  th Mini‑Mental State Examination,Addenbrooke′s CognitiveExamination‑Revised, and Montreal Cognitive Assessment[J]. J Clin Exp Neuropsychol, 2018, 40(2):107‑122. DOI:10.1080/13803395.2017.1316970.


[73] Oudman E, Postma A, Van der Stigchel S, et al. T Montreal Cognitive Assessment (MoCA) is superior to theMini Mental State Examination (MMSE) in detection ofKorsakoff′s syndrome[J]. Clin Neuropsychol, 2014, 28(7):1123‑1132. DOI: 10.1080/13854046.2014.960005.


[74] Alarcon R, Nalpas B, Pelletier S, et al. MoCA as a screening tool of neuropsychological deficits in alcohol‑dependentpatients[J]. Alcohol Clin Exp Res, 2015, 39(6):1042‑1048.DOI: 10.1111/acer.12734.


[75] Ewert V, Pelletier S, Alarcon R, et al. Determination of MoCA cutoff score in patients with alcohol use disorders[J]. Alcohol Clin Exp Res, 2018, 42(2): 403‑412. DOI:10.1111/acer.13547.


[76] Hagen E, Sømhovd M, Hesse M, et al. Measuring cognitiv impairment in young adults with polysubstance use disorder with MoCA or BRIEF‑A‑The significance ofpsychiatric symptoms[J]. J Subst Abuse Treat, 2019, 97:21‑27. DOI: 10.1016/j.jsat.2018.11.010.


[77] Ritz L, Lannuzel C, Boudehent C, et al. Validation of a brief screening tool for alcohol‑related neuropsychologicalimpairments[J]. Alcohol Clin Exp Res, 2015, 39(11):2249‑2260. DOI: 10.1111/acer.12888.


[78] Pelletier S, Alarcon R, Ewert V, et al. Comparison of th MoCA and BEARNI tests for detection of cognitiveimpairment in in‑patients with alcohol use disorders[J].Drug Alcohol Depend, 2018, 187:249‑253. DOI: 10.1016/j.drugalcdep.2018.02.026.


[79] Berry J, Shores EA, Nardo T, et al. Brief executive‑function assessment tool: a new cognitive impairment screeningtool for alcohol and other drug services[J]. ApplNeuropsychol Adult, 2022, 29(6): 1511‑1521. DOI:10.1080/23279095.2021.1895791.


[80] Ko KY, Ridley N, Bryce SD, et al. Screening tools forcognitive impairment in adults with substance usedisorders: a systematic review[J]. J Int Neuropsychol Soc,2022, 28(7):756‑779. DOI: 10.1017/S135561772100103X.


[81] Liu Y, Li J, Bu H, et al. Circular RNA expression alterationidentifies a novel circulating biomarker in serumexosomal for detection of alcohol dependence[J]. AddictBiol, 2021, 26(6):e13031. DOI: 10.1111/adb.13031.


[82] Zhang B, Wang G, Huang CB, et al. Exploration of the rol of serine proteinase inhibitor A3 in alcohol dependenceusing gene expression omnibus database[J]. FrontPsychiatry, 2021, 12: 779143. DOI: 10.3389/fpsyt. 2021.779143.


[83] Liu Y, Zhang Y, Peng J, et al. Autophagy alleviates ethanol‑induced memory impairment in association withanti‑apoptotic and anti‑inflammatory pathways[J]. BrainBehav  Immun,  2019,  82: 63‑75.  DOI:  10.1016/j.bbi.2019.07.033.


[84] Li Y, Duan R, Gong Z, et al. Neurofilament light chain is a promising biomarker in alcohol dependence[J]. FrontPsychiatry, 2021, 12: 754969. DOI: 10.3389/fpsyt.2021.754969.


[85] Zhang T, Song B, Li Y, et al. Neurofilament light chain as abiomarker for monitoring the efficacy of transcranial magnetic stimulation on alcohol use disorder[J]. FronBehav Neurosci, 2022, 16: 831901. DOI: 10.3389/fnbeh.2022.831901.


[86] Yuan J, Wu C, Wu L, et al. The association of P300components with clinical characteristics and efficacy opharmacotherapy in alcohol use disorder[J]. FrontPsychiatry, 2022, 13: 770714. DOI: 10.3389/fpsyt.2022.770714.


[87] Association AP, Force DT. Diagnostic and StatisticalManual of Mental Disorders, Fifth Edition (DSM‑5) [M].Arlington, VA: American Psychiatric Association, 2013.


[88] Oslin D, Atkinson RM, Smith DM, et al. Alcohol relateddementia: proposed clinical criteria[J]. Int J GeriatrPsychiatry, 1998, 13(4): 203‑212. DOI: 10.1002/(sici)1099‑1166(199804)13∶4&lt;203::aid‑gps734&gt;3.0.co;2‑b.


[89] Galvin R, Bråthen G, Ivashynka A, et al. EFNS guidelinesfor diagnosis, therapy and prevention of Wernickeencephalopathy[J]. Eur  J  Neurol,  2010,  17(12):1408‑1418. DOI: 10.1111/j.1468‑1331.2010.03153.x.


[90] Soyka M, Friede M, Schnitker J. Comparing nalmefene andnaltrexone in alcohol dependence: are there anydifferences? Results from an indirect meta‑analysis[J].Pharmacopsychiatry, 2016, 49(2): 66‑75. DOI: 10.1055/s‑0035‑1565184.


[91] Skinner MD, Lahmek P, Pham H, et al. Disulfiram efficacyin the treatment of alcohol dependence: a meta‑analysis[J]. PLoS One, 2014, 9(2):e87366. DOI: 10.1371/journal.pone.0087366.


[92] Kalk NJ, Lingford‑Hughes AR. The clinical pharmacologyof acamprosate[J]. Br J Clin Pharmacol, 2014, 77(2):315‑323. DOI: 10.1111/bcp.12070.


[93] Rolland B, Labreuche J, Duhamel A, et al. Baclofen fordependence: relationships between baclofen andalcohol dosing and the occurrence of major sedation[J] Eur Neuropsychopharmacol, 2015,25(10): 1631‑1636.DOI: 10.1016/j.euroneuro.2015.05.008.


[94] Guglielmo R, Martinotti G, Quatrale M, et al. Topiramate inalcohol use disorders: review and update[J]. CNS Drugs,2015, 29(5):383‑395. DOI: 10.1007/s40263‑015‑0244‑0.


[95] Rolland B, Paille F, Gillet C, et al. Pharmacotherapy foralcohol dependence: the 2015 recommendations of French Alcohol Society, issuedinpartnership with theEuropean Federation of Addiction Societies[J]. CNSNeurosci Ther, 2016, 22(1): 25‑37. DOI: 10.1111/cns.12489.


[96] Reus Ⅵ, Fochtmann LJ, Bukstein O, et al. The American Psychiatric Association  practice  guideline  for  th pharmacological treatment of patientswith alcohol usedisorder[J]. Am J Psychiatry, 2018, 175(1): 86‑90. DOI:10.1176/appi.ajp.2017.1750101.


[97] Haber PS, Riordan BC, Winter DT, et al. New Australi guidelines for the treatment of alcohol problems: anoverview of recommendations[J]. Med J Aust, 2021, 215Suppl 7:S3‑S32. DOI: 10.5694/mja2.51254.


[98] Zhang J, Fong K, Ouyang RG, et al. Effects of repetitivetranscranial magnetic stimulation (rTMS) on craving andsubstance consumption in patients with substancedependence: a systematic review and meta‑analysis[J].Addiction, 2019, 114(12): 2137‑2149. DOI: 10.1111/add.14753.


[99] Song S, Zilverstand A, Gui W, et al. Reducing craving andconsumption in individuals with drug addiction, obesityor overeating through neuromodulation intervention: asystematic review and meta‑analysis of its follow‑upeffects[J]. Addiction, 2022, 117(5): 1242‑1255. DOI:10.1111/add.15686.


[100] Hu X, Zhang T, Ma H, et al. Repetitive transcrani magnetic stimulation combined with cognitive behavioral therapy treatment in alcohol‑dependent patients: randomized, double‑blind sham‑controlled multicenterclinical trial[J]. Front Psychiatry, 2022, 13:935491. DOI:10.3389/fpsyt.2022.935491.


[101] Hoven M, Schluter RS, Schellekens AF, et al. Effects of 10add‑on HF‑rTMS treatment sessions on alcohol use andcraving among detoxified inpatients with alcohol usedisorder: a randomized sham‑controlled clinical trial[J].Addiction, 2023, 118(1):71‑85. DOI: 10.1111/add.16025.


[102] Harel M, Perini I, Kämpe R, et al. Repetitive transcranialmagnetic stimulation  in  alcohol  dependence:  arandomized,  double‑blind,  sham‑controlleproof‑of‑concept trial targeting the medial prefrontal andanterior cingulate cortices[J]. Biol Psychiatry, 2022,91(12):1061‑1069. DOI: 10.1016/j.biopsych.2021.11.020.


[103] Perini I, Kämpe R, Arlestig T, et al. Repetitive transcranialmagnetic stimulation targeting the insular cortex forreduction of heavy drinking in treatment‑seekingalcohol‑dependent subjects: a randomized controlled trial[J]. Neuropsychopharmacology, 2020, 45(5): 842‑850.DOI: 10.1038/s41386‑019‑0565‑7.


[104] Alizadehgoradel J, Nejati V, Sadeghi Movahed F, et al.Repeated stimulation of the dorsolateral‑prefrontalcortex improves executive dysfunctions and craving indrug  addiction:  a  randomized,  double‑blind,parallel‑group study[J]. Brain Stimul, 2020, 13(3):582‑593. DOI: 10.1016/j.brs.2019.12.028.


[105] Nishimoto A, Usery J, Winton JC, et al. High‑doseparenteral  thiamine  in  treatment  of  Wernicke′sencephalopathy: case series and review of the literature[J]. In Vivo, 2017, 31(1): 121‑124. DOI: 10.21873/invivo.11034.


[106] Latt N, Dore G. Thiamine in the treatment of Wernickeencephalopathy in patients with alcohol use disorders[J].Intern Med J, 2014, 44(9): 911‑915. DOI: 10.1111/imj.12522.


[107] Peng Y, Yang PH, Guo Y, et al. Catalase and peroxiredoxin 5protect Xenopus embryos against alcohol‑induced oculaanomalies[J]. Invest Ophthalmol Vis Sci, 2004, 45(1):23‑29. DOI: 10.1167/iovs.03‑0550.


[108] Peng Y, Yang PH, Ng SS, et al. Protection of Xenopus laevisembryos against alcohol‑induced delayed gut maturationand growth retardation by peroxiredoxin 5 and catalase[J]. J Mol Biol, 2004, 340(4): 819‑827. DOI: 10.1016/j.jmb.2004.05.047.


[109] Peng Y, Kwok KH, Yang PH, et al. Ascorbic acid inhibiROS production, NF‑kappa B activation and preventsethanol‑induced growth retardation and microencephaly[J]. Neuropharmacology, 2005, 48(3): 426‑434. DOI:10.1016/j.neuropharm.2004.10.018.


[110] Zheng D, Li Y, He L, et al. The protective effect ofastaxanthin on fetal alcohol spectrum disorder in mice[J].Neuropharmacology, 2014, 84: 13‑18. DOI: 10.1016/j.neuropharm.2014.04.013.


[111] Wang H, Liu L, Zhou X, et al. Efficacy and safety ofshort‑term edaravone or nerve growth factor add‑ontherapy for alcohol‑related brain damage: a multi‑centrerandomised control trial[J]. Addiction, 2024, 119(4):717‑729. DOI: 10.1111/add.16398.

[112] Nubukpo P, Ramoz N, Girard M, et al. Determinantofblood brain‑derived neurotrophic factor blood levels inpatients with alcohol use disorder[J]. Alcohol Clin ExpRes, 2017, 41(7):1280‑1287. DOI: 10.1111/acer.13414.


[113] Brust JC. Ethanol and cognition: indirect effects,neurotoxicity and neuroprotection: a review[J]. Int JEnviron Res Public Health, 2010, 7(4): 1540‑1557. DOI:10.3390/ijerph7041540.


[114] Agostini JF, Toé H, Vieira KM, et al. Cholinergic system andoxidative stress changes in the brain of a zebrafish modelchronically exposed to ethanol[J]. Neurotox Res, 2018,33(4):749‑758. DOI: 10.1007/s12640‑017‑9816‑8.


[115] Kim KY, Ke V, Adkins LM. Donepezil for alcohol‑relateddementia: a case report[J]. Pharmacotherapy, 2004, 24(3):419‑421. DOI: 10.1592/phco.24.4.419.33178.


[116] Bell MD, Pittman B, Petrakis I, et al. Donepezil andcognitive remediation therapy to augment treatment ofalcohol use disorder related mild cognitive impairment(AUD‑MCI): an open label pilot study with historicalcontrols[J]. Subst Abus, 2021, 42(4): 412‑416. DOI:10.1080/08897077.2020.1844847.


[117]倪晓东, 徐鹤定, 王祖承. 酒精所致精神障碍的药物治疗现状[J]. 上海精神医学, 2008, 20(6):371‑373.


[118]陈锋, Andrew J Lawrence, 梁建辉. 酒精滥用与成瘾中枢神经递质的研究进展[J]. 中国药物依赖性杂志, 2007, (1):5‑12.


[119] Yoon SJ, Pae CU, Kim DJ, et al. Mirtazapine for patientswith alcohol dependence and comorbid depressivedisorders: a multicentre, open label study[J]. ProgNeuropsychopharmacol Biol Psychiatry, 2006, 30(7):1196‑1201. DOI: 10.1016/j.pnpbp.2006.02.018.


[120] Peng WF, Wang X, Hong Z, et al. The anti‑depression effectof Xylaria nigripes in patients with epilepsy: a multicenterrandomized double‑blind study[J]. Seizure, 2015, 29:26‑33. DOI: 10.1016/j.seizure.2015.03.014.


[121]马志章, 左萍萍, 陈宛如, 等. 乌灵菌粉的镇静作用及其机理研究[J]. 中国药学杂志, 1999, (6):14‑17.


[122] Zhang X, Kang D, Zhang L, et al. Shuganjieyu capsule formajor depressive disorder (MDD) in adults: a systematicreview[J]. Aging Ment Health, 2014, 18(8):941‑953. DOI:10.1080/13607863.2014.899975.


[123] Emberson J, Bennett D, Link E, et al. C‑reactive proteinconcentration and the vascular benefits of statin therapy:an analysis of 20, 536 patients in the Heart ProtectionStudy[J].  Lancet,  2011,  377(9764): 469‑476.  DOI:10.1016/S0140‑6736(10)62174‑5.


[124] Chan D, Binks S, Nicholas JM, et al. Effect of high‑dosesimvastatin  on  cognitive,  neuropsychiatric,  andhealth‑related quality‑of‑life measures in secondary progressive multiple sclerosis: secondary analyses from the MS‑STAT randomised, placebo‑controlled trial[J]. Lancet Neurol, 2017, 16(8): 591‑600. DOI: 10.1016/S1474‑4422(17)30113‑8.


[125] Grant S, Kandrack R, Motala A, et al. Acupuncture for substance use disorders: a systematic review andmeta‑analysis[J]. Drug Alcohol Depend, 2016, 163: 1‑15.DOI: 10.1016/j.drugalcdep.2016.02.034.


[126] Chen H, Feng J, Chen L, et al. Acupoint stimulation foralcohol  use  disorder:  a  systematic  review  andmeta‑analysis[J]. Medicine (Baltimore), 2023, 102

金路捷微医学
作为医护人员贴心的掌上助手,这里可以为您提供独家深入的原创文章,功能齐全,量身定制的会员系统,集专业与功能趣味于一体的小程序应用,以及免费兑换的智能科技新品,惊喜从未间断,超乎你的想象!
 最新文章